
A Framework for Computing Discrete-Time Systems and
Functions using DNA

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Sayed Ahmad Salehi

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Advisors: Keshab K. Parhi and Marc D. Riedel

July, 2017

c© Sayed Ahmad Salehi 2017

ALL RIGHTS RESERVED

Acknowledgements

This thesis has been done under supervision of two advisors, Professor Keshab K.

Parhi and Professor Marc D. Riedel. With different research backgrounds and ap-

proaches, they acutely supervised my research in totally different aspects. I am thankful

to both of them because my research achievements could not be accomplished with-

out their thoughtful guidance, constructive criticisms, and fruitful scientific discussions.

Furthermore, I sincerely appreciate their encouragement, support, kindness, and true

understanding of my concerns during my graduate studies at the University of Min-

nesota.

I would like to express my deeply-felt thanks to other members of my thesis com-

mittee: Professor Kiarash Bazargan and Professor Antonia Zhai. Their invaluable com-

ments and feedback helped me improve the quality of this research.

I would also like to thank Dr. Vishwesh Kulkarni for our productive discussions

about my research. I am grateful to my current and former members of our research

group. In particular, Dr. Yingjie Lao, Dr. Chuan Zhang, Dr. Hua Jiang, Dr. Te-Lung

Kung, Dr. Mojtaba Bandarabadi, Abdolreza Rashno, Sandhya Koteshwara, Bhaskar

Sen, Sandeep Avvaru, Denis Chu, Zisheng Zhang, Yin Liu, and Anoop Koyily for all

the good time I spent with them.

I want to acknowledge my thanks to National Science Foundation for their financial

support of this research, under grants CCF-1117168 and CCF-14234707, without which

I would not have been able to develop my scientific discoveries.

i

Last, but most importantly, my sincerest gratitude goes to my family: my wonderful

mom Badrosadat, my dad Sayed Kamal, my brother Sayed Mohamad, and my beautiful

sister Sabihesadat. Definitely I would not be standing where I am today without their

faithful love and support.

ii

Dedication

To my parents for their endless, faithful, and unconditional love and support.

iii

Abstract

Due to the recent advances in the field of synthetic biology, molecular computing has

emerged as a non-conventional computing technology. A broad range of computational

processes has been considered for molecular implementation. In this dissertation, we

investigate the development of molecular systems for performing the following compu-

tations: signal processing, Markov chains, polynomials, and mathematical functions.

First, we present a fully asynchronous framework to design molecular signal pro-

cessing algorithms. The framework maps each delay unit to two molecular types, i.e.,

first-type and second-type, and provides a 4-phase scheme to synchronize data flow for

any multi-input/multi-output signal processing system. In the first phase, the input

signal and values stored in all delay elements are consumed for computations. Results

of computations are stored in the first-type molecules corresponding to the delay units

and output variables. During the second phase, the values of the first-type molecules are

transferred to the second-type molecules for the output variable. In the third phase, the

concentrations of the first-type molecules are transferred to the second-type molecules

associated with each delay element. Finally, in the fourth phase, the output molecules

are collected. The method is illustrated by synthesizing a simple finite-impulse re-

sponse (FIR) filter, an infinite-impulse response (IIR) filter, and an 8-point real-valued

fast Fourier transform (FFT). The simulation results show that the proposed framework

provides faster molecular signal processing systems compared to prior frameworks.

We then present an overview of how continuous-time, discrete-time and digital signal

processing systems can be implemented using molecular reactions. We also present

molecular sensing systems where molecular reactions are used to implement analog-to-

digital converters (ADCs) and digital-to-analog converters (DACs). These converters

can be used to design mixed-signal processing molecular systems. A complete example

of the addition of two molecules using digital implementation is described where the

iv

concentrations of two molecules are converted to digital by two 3-bit ADCs, and the

4-bit output of the digital adder is converted to analog by a 4-bit DAC.

Furthermore, we describe implementation of other forms of molecular computation.

We propose an approach to implement any first-order Markov chain using molecular

reactions in general and DNA in particular. The Markov chain consists of two parts: a

set of states and state transition probabilities. Each state is modeled by a unique molec-

ular type, referred to as a data molecule. Each state transition is modeled by a unique

molecular type, referred to as a control molecule, and a unique molecular reaction. Each

reaction consumes data molecules of one state and produces data molecules of another

state. The concentrations of control molecules are initialized according to the proba-

bilities of corresponding state transitions in the chain. The steady-state probability of

the Markov chain is computed by the equilibrium concentration of data molecules. We

demonstrate our method for the Gamblers Ruin problem as an instance of the Markov

chain process. We analyze the method according to both the stochastic chemical kinetics

and the mass-action kinetics model.

Additionally, we propose a novel unipolar molecular encoding approach to compute

a certain class of polynomials. In this molecular encoding, each variable is represented

using two molecular types: a type-0 and a type-1. The value is the ratio of the con-

centration of type-1 molecules to the sum of the concentrations of type-0 and type-1

molecules. With the new encoding, CRNs can compute any set of polynomial functions

subject only to the limitation that these polynomials can be expressed as linear com-

binations of Bernstein basis polynomials with positive coefficients less than or equal to

1. The proposed encoding naturally exploits the expansion of a power-form polynomial

into a Bernstein polynomial. We present molecular encoders for converting any input

in a standard representation to the fractional representation, as well as decoders for

converting the computed output from the fractional to a standard representation.

Lastly, we expand the unipolar molecular encoding for bipolar molecular encod-

ing and propose simple molecular circuits that can compute multiplication and scaled

v

addition. Using these circuits, we design molecular circuits to compute more complex

mathematical functions such as e−x, sin(x), and sigmoid(x). According to this approach,

we implement a molecular perceptron as a simple artificial neural network.

vi

Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Overview . 1

1.2 Contribution . 3

1.3 Outline of the Dissertation . 4

2 Design and Modeling of Molecular Computing Systems 6

2.1 Design (Programming) . 6

2.2 Simulation (Modeling) . 7

2.2.1 Stochastic model . 8

2.2.2 Mass-action kinetic model . 9

2.3 Implementation . 9

vii

3 Asynchronous Discrete-time Signal Processing 14

3.1 Prior Work . 14

3.1.1 Fully-Synchronous Framework 15

3.1.2 Globally-Synchronous Locally-Asynchronous Framework (RGB) . 19

3.2 Fully Asynchronous Scheme . 22

3.3 SIMULATION RESULTS . 31

3.4 COMPARISON . 33

4 Mixed-Signal Molecular Computing Systems 36

4.1 Molecular Continuous-Time Systems . 37

4.2 Digital Sensing and Computing Molecular Systems 41

4.2.1 Analog to Digital Converter (ADC) 42

4.2.2 Molecular Digital Logic Circuits 46

4.2.3 Digital to Analog Converter (DAC) 49

4.2.4 A complete molecular digital System 51

4.3 DNA Implementation . 51

4.4 Discussion and Concluding Remarks . 52

5 Markov Chain Computations using Molecular Reactions 61

5.1 Introduction . 61

5.2 Modeling by Molecular reactions . 62

5.3 Analysis of the Proposed Molecular Model 65

5.3.1 Stochastic Model . 65

5.3.2 Mass-action Kinetics . 67

5.4 DNA implementation . 68

5.5 Discussion . 73

6 CRNs for Computing Polynomials Using Fractional Coding 74

6.1 Fractional Coding . 74

viii

6.2 CRNs for Computing Polynomials . 75

6.2.1 Representation by Bernstein Polynomials 79

6.2.2 Synthesizing CRNs for Computing Polynomials 81

6.2.3 Proof Based on the Mass-Action Kinetics 84

6.2.4 Encoding and Decoding . 86

6.2.5 DNA Implementation . 89

6.3 Discussion . 93

7 CRNs for Computing Mathematical Functions using Fractional Cod-

ing 95

7.1 Prior work . 95

7.2 CRNs for Multiplication Units . 99

7.2.1 Mult unit: . 99

7.2.2 NMult unit: . 101

7.3 Designing CRNs for Computing Functions 101

7.3.1 Methodology . 101

7.4 Molecular Perceptron . 106

7.4.1 MUX unit: . 106

7.4.2 Bipolar Mult unit: . 108

7.4.3 Bipolar NMult unit: . 108

7.4.4 Bipolar sigmoid function . 108

7.5 DNA Implementation . 109

7.6 Discussion . 113

8 Conclusions and Future Directions 114

8.1 Conclusion . 114

8.2 Future Directions . 116

References 118

ix

Appendix A. List of molecular Reactions 129

A.1 Molecular Reactions . 129

A.1.1 molecular perceptron . 129

A.1.2 molecular ADC 3bit . 137

A.1.3 molecular DAC 3bit . 138

A.1.4 molecular Adder 3bit . 140

A.1.5 molecular Markov . 146

A.1.6 y(x) = 3
4x

2 − x+ 3
4 Molecular . 147

A.1.7 molecular encoder . 147

A.1.8 molecular decoder . 148

A.1.9 molecular e-x . 148

A.1.10 molecular bipolar sigmoid . 151

A.1.11 molecular unipolar sigmoid . 152

A.1.12 molecular Fully async FIR . 154

A.1.13 molecular Fully async IIR . 155

A.2 DNA Reactions . 156

A.2.1 perceptron DNA . 156

A.2.2 ADC-3bit DNA . 197

A.2.3 DAC-3bit DNA . 202

A.2.4 Markov Chain DNA . 206

A.2.5 y(x) = 3
4x

2 − x+ 3
4 DNA . 208

A.2.6 Function e−x DNA . 210

x

List of Tables

4.1 Stable concentration of molecules i, x2, and w2 after completion of Re-

actions (4.15). 44

4.2 Stable molecular concentrations after completion of Reactions (4.16) and

(4.17). 45

5.1 Simulation vs theoretical computation of ruin probability for example in

Figure 5.1 . 67

5.2 Simulation vs theoretical computation of ruin probabilities for A 9-state

gambler Ruin Problem . 71

6.1 The number of required molecular types in the proposed CRN for a poly-

nomial of degree m. 83

6.2 Accuracy of a DNA strand displacement implementation of a CRN com-

puting y(x) = 1
4 + 9

8x−
15
8 x

2 + 5
4x

3 using the proposed method. 90

6.3 Number of chemical and DNA Strand-Displacement reactions for each

group of the proposed CRN for computation of a Bernstein polynomial

of degree m. 93

7.1 Truncated Maclaurin series, reformatted Maclaurin series using Horner’s

rule, and Mult/NMult structure for functions in equations (41)-(46) of

the Supplementary Information. 105

7.2 Computed values of functions with the proposed CRNs compared to their

exact values. 110

xi

8.1 Comparison between molecular (DNA) and electronics (silicon) comput-

ing systems. 115

xii

List of Figures

2.1 An example of DNA strand displacement. 11

2.2 DNA implementation of A+B → C. According to the methodology

developed in [1], a sequence of six DNA strand displacement reactions,

R1−R6, implement bimolecular reaction A+B → C. 12

3.1 Block diagram for the moving-average filter [2]. 16

3.2 simulation results for R and B phases of a four-phase oscillator [2]. . . . 18

3.3 Block diagram for synchronous implementation of the moving-average

filter [2]. 19

3.4 Set of molecular reactions for the synchronous implementation of the

moving-average filter [2]. 19

3.5 Block diagram for the asynchronous implementation of the moving-average

filter [2]. 20

3.6 (i) Implementing delay elements using the 3-phase asynchronous scheme.

(ii) Cascaded delay elements implemented using asychronous scheme [2]. 20

3.7 Set of molecular reactions for the asynchronous implementation of the

moving-average filter [2]. 21

3.8 Two types of signal transfer not allowed in our molecular scheme: (a)

Outgoing edges scheduled in different times (b) Incoming edge with as-

signed phase i+1 for a node with outgoing edge assigned to phase i. . . 23

xiii

3.9 A three-tap FIR filter: (a) Block diagram, (b) Data flow graph and

scheduling based on the proposed method. 25

3.10 An IIR filter: (a) Block diagram, (b) Data flow graph and scheduling for

molecular implementation. 26

3.11 4-parallel 8-point RFFT: (a)Block diagram, (b)Data flow graph and schedul-

ing obtained by the proposed method. 29

3.12 Implementation of multiplexer by molecular reactions. 29

3.13 Speeding up signal transfers by positive feedback. 31

3.14 Simulation results for FIR filter. 32

3.15 Simulation results for IIR filter. 33

3.16 Simulation results for 8-point RFFT. 34

4.1 Constructing linear I/O systems based on transfer function Y (s)
U(s) = B(s)

A(s) ,

using integration, gain, and summation blocks. 40

4.2 A first order low-pass continuous-time filter. 41

4.3 Block diagram of a general system developed in this chapter. 42

4.4 Simulation results of 3-bit molecular ADC for different input concentrations. 54

4.5 Schematic of the 3-bit adder; (a) Block diagram, (b) Internal circuits for

HA and FA blocks. 55

4.6 Block diagram of the system for verifying molecular 3-bit adder. 55

4.7 Simulation results of the molecular implementation of the system shown

in Figure 4.6. 56

4.8 Schematic for 4-bit Square-root unit. 57

4.9 Kinetics simulations that compute the Square-root of 0, 1, 4, and 9 using

the molecular implementation of unit shown in Figure 4.8. 57

4.10 Block diagram of a simple prototype developed and verified in this research. 58

4.11 Simulation results for the system shown in Figure 6.1. 59

4.12 Implementation of A + B
f−⇀↽−
r
C + D using DNA strand-displacement

mechanism. 59

xiv

4.13 Simulation results for the DNA implementation of the system shown in

Figure 6.1. 60

5.1 State diagram for the gambler problem with N=3. 63

5.2 First two steps of updating the state of molecular model for Figure 5.1. 66

5.3 Stochastic simulation results for molecular model of Figure 5.1. 68

5.4 a) ODE simulation for molecular model of Markov chain in Figure 5.1,

b) The computed [RUIN]/([RUIN]+[WIN]) ratio. 69

5.5 DNA representation of molecule A. 70

5.6 Simulation results of DNA implementation for the proposed molecular

model for Figure 5.1. 71

5.7 Simulation results of the DNA implementation for the gambler problem

with N=9 and starting with a) $5, b) $8. 72

6.1 Whole system performing computation in fractional representation. . . . 76

6.2 Simulation results for the CRN implementing the polynomial y(x) =

3
4x

2− x+ 3
4 at x = 0.5. These were obtained from an ODE simulation of

the mass-action kinetics. 79

6.3 The values of y(x) computed by a DNA implementation of proposed

CRN. Blue line: target y(x). Red stars: computed by DNA reactions. . 91

6.4 DNA strand displacement reactions that emulates reaction A + B
ki−→

A+B + C. 92

6.5 DNA strand displacement reaction that emulates reaction A
ki−→ ∅. . . 93

xv

7.1 Basic molecular modules. a, Multiplication module, Mult, calculates

c = a × b, the multiplication of two input variables a and b in unipolar

fractional representation. The module is implemented by four molecular

reactions and represented by the presented symbol. b, The four molec-

ular reactions and the symbol for Nmult unit. This module computes

c = 1−a×b in unipolar fractional representation. c, The MUX unit that

performs scaled addition. a, b and c can be unipolar or bipolar, whereas

s is in unipolar representation. d, The bipolar Mult unit that performs

multiplication in bipolar fractional representation and its molecular reac-

tions. e, The molecular reactions and the symbol for bipolar NMult unit.

This module computes c = −a× b in bipolar fractional representation . 100

7.2 The proposed methodology. This figure shows the required steps for

computing functions based on the proposed methodology. It starts with

the approximation of the desired function as a polynomial using a series

expansion method. The polynomial is then expressed in an equivalent

form that only contains Mult and NMult units. The structure of Mult

and NMult elements are mapped to their equivalent chemical reactions

and finally the CRN is implemented by DNA strand displacement reactions.102

7.3 Molecular Perceptron. a, A perceptron system with 32 binary inputs

and 1 output between 0 and 1. b, Molecular implementation of bipolar

sigmoid function using bipolar Mult, NMult and MUX units. c, Results

for the molecular simulation and MATLAB simulation of the perceptron

system. Considering 0.5 as the threshold for decision, the results show

that the molecular and MATLAB simulation agree with respect to the

final decision. 107

xvi

7.4 DNA simulation results. The DNA reaction kinetics for computation

of e−x, sin(x), cos(x), log(1 + x), tanh(x), and sigmoid(x) for x=0.3,

and x=0.7. Each row is related to one function. The details for DNA

implementation are listed in Supplementary Information Section S.7 . . 111

7.5 Exact and computed values of the functions. Computed values of

functions using our proposed molecular systems along their exact graphs

for e−x, sin(x), cos(x), log(1 + x), tanh(x), and sigmoid(x). Blue lines:

exact values, red stars: computed values. 112

xvii

Chapter 1

Introduction

1.1 Overview

The field of synthetic biology has advanced remarkably in the last 20-25 years. The

progress in the broad field of synthetic biology continues to accelerate at a rate even

faster than Moore’s law that refers to doubling in the number of transistors on an

integrated circuit (IC) chip every 18 months. A similar growth in synthetic biology is

referred as Carlson’s law [3], [4]. Due to the remarkable advancements in the field of

synthetic biology, biomolecular systems are emerging as new technologies for performing

computation. For bimolecular systems the concentrations of molecules, i.e., number of

molecules per unit volume, represent signal values, in the same way that for electronic

systems voltages, i.e., energy per unit charge, represent signal values. One can design

molecular systems to perform signal processing or other forms of computation in terms

of molecular concentrations.

The idea of computation directly with molecular reactions, as opposed to writ-

ing computer programs to analyze chemical systems, dates back to the early work by

Conard [5] and the seminal work of Adleman [6].In this context, a chemical reaction

1

2

network (CRN) transforms input concentrations of molecular types into output concen-

trations, and thus implements computation. (It should be noted that the equilibrium

concentrations of the output molecules are considered as the computed output of the

system.) In other words, CRNs are used as a programming language for designing

molecular computing systems. These designed programs, i.e., CRNs, are technology-

independent and can be realized by any physical molecular system. In this research,

the designed CRNs are mapped to DNA, a promising technology for such systems.

Although the ability to compute using biological and chemical molecules, as an

alternative to computing using silicon ICs has been demonstrated [7], the incentive of

molecular computing is not to compete with electronic circuits in terms of computational

speed or size. Electronic circuits perform computations on the scale of nanoseconds

whereas the computational rate of molecular systems is measured in minutes or even

hours (typically 10-15 orders of magnitude slower). For example, when using a molecular

system to monitor a protein 4 times a day, one requires a sample period of 21,600 seconds

whereas, the sampling period for the electronic circuits is 1 ns with a clock speed of

1 GHz. Fortunately, today’s DNA circuits can meet these sample rate constraints for

simple circuits. Due to the advancement in the semiconductor technology, electronic

circuits have been scaled to the size of nanometers. The size of molecular computing

systems is also in the order of nanometers.

The main advantage of molecular computing systems is their environment of appli-

cation. Whereas electronic circuits are pervasive in industrial and commercial appli-

cations, in some situations, it is more appropriate to implement computation directly

with biological mechanisms. Molecular computing has the potential to revolutionize

monitoring concentrations or rates of change of concentrations of proteins and targeted

drug delivery. For example, one might want to implement a molecular mechanism for

detecting protein markers of cancer and for producing drugs targeted precisely to can-

cerous cells. In fact, biomolecular circuits are the best alternative for electronic circuits

and other computing technologies for in vivo applications. They are compatible with

3

living cells and, unlike electronic circuits, biomolecular circuits do not need batteries.

Biomolecular circuits can obtain the required energy from resources, such as heat, when

inside living bodies.

This research discusses two categories of molecular computing systems. The first

group is made up of molecular reactions that perform discrete-time signal processing.

The second group is compromised of molecular systems for other forms of computation.

For the first group, only one molecular type is used to represent the value of each sig-

nal/variable. This is the traditional way of molecular signal representation where, the

signal/variables value is directly defined by the concentration of the assigned molecu-

lar type. For the second group, however, each signal/variable is represented using two

molecular types: type-0 and type-1. The variables value is defined as the ratio of concen-

tration of molecule type-1 over the total concentration of type-0 and type-1 molecules.

This novel representation, proposed for the first time in this research, is referred to as

fractional coding. Fractional coding empowers the computational capability of chemical

reactions and enables them to compute more complex mathematical functions.

1.2 Contribution

The contributions of this research can be listed as follows.

1- The most challenging parts of molecular implementation of signal processing

algorithms are signal flow controlling and delay (memory) units. This thesis pro-

poses an asynchronous forward signal flow scheme that is able to implement multiple-

input/multiple-output signal processing systems including delay units. Prior work [2]

has proposed two other schemes, i.e., synchronous and RGB schemes, for signal flow

control and has verified them for the implementation of finite impule response (FIR)

and infinite impulse response (IIR) filters. In this thesis, we implement FIR and IIR

filters and 8-point real-valued FFT algorithm using both prior signal flow schemes and

4

the proposed signal flow scheme. Then we compare them with respect to the num-

ber of required molecular types and reactions, computational speed and accuracy, and

robustness.

2- In order to increase the robustness of molecular computing systems, we propose

mixed (digital and analog) signal processing structures. Since digital is more robust

than analog, part of the computation can be performed in digital. We propose required

analog to digital and digital to analog converters by molecular reactions.

3- Markov chains have been used to model different systems. For the first time, we

propose a systematic method for implementing Markov chains by molecular reactions.

4-We propose fractional coding for molecular systems that bridges molecular com-

puting and stochastic logic.

5- Based on the proposed unipolar fractional coding, we present a systematic method

to design molecular reactions for computing Bernstein polynomials. The method is used

to compute a wide range of general polynomials with both the input and output in the

unit interval [0, 1].

6- Based on the unipolar and bipolar fractional coding, we propose molecular re-

actions for computing mathematical functions. We show that some common complex

functions such as sinx, e−x, log(1 + x), and sigmoid(x) can be computed by molecular

reactions. Since all of these reactions are bimolecular reactions, i.e., each reaction has

only two reactants, they are compatible with natural DNA and can be implemented by

DNA systems with a high level of accuracy.

1.3 Outline of the Dissertation

This dissertation is organized as follows:

Chapter 2, provides the development process employed in this research for implemen-

tation of molecular computing systems. The process consists of three phases: design,

5

simulation, and implementation. The chapter describes the tools and methods used in

each phase.

Chapter 3 presents a new design framework for discrete-time signal processing sys-

tems by molecular reactions. The presented framework is a fully-asynchronous scheme.

The DNA implementation of the new framework is compared to prior frameworks.

Chapter 4 reviews molecular implementation of continuous-time, discrete-time, and

digital signal processing systems. It also presents molecular sensing systems where

molecular reactions are used to implement analog-to-digital converters (ADCs) and

digital-to-analog converters (DACs). The chapter provides several examples including a

complete example of the addition of two molecular signals using digital implementation.

For this example, the concentrations of two input molecules are converted to digital by

two 3-bit ADCs, and the 4-bit output of the digital adder is converted to analog by a

4-bit DAC.

Chapter 5 discusses a systematic method that can be used in order to synthesize

molecular reactions for computing any first order Markov chain process. This chapter

theoretically analyze the synthesized reactions and validate them for DNA implemen-

tation.

Chapter 6 introduces unipolar fractional coding as a new non-standard representa-

tion of variables by molecules. Based on this molecular coding the chapter presents a

systematic method for synthesis of chemical reactions that are able to compute polyno-

mials.

Chapter 7 introduces bipolar representation and very simple molecular reactions for

operations such as multiplication and addition. This chapter then presents a system-

atic method for synthesis of chemical reactions that are able to compute mathematical

functions. The chapter also describes implementation of molecular perceptron using the

fractional molecular coding.

Finally, Chapter 8 concludes remarks and points out some of the possible future

research directions.

Chapter 2

Design and Modeling of

Molecular Computing Systems

Generally speaking, a product development process for a system consists of three

main phases: design (programming), simulation (modeling), and implementation. Sim-

ilarly, we develop the desired molecular systems through several iterations of a design-

simulation-implementation cycle. This chapter describes methods and tools we use in

each development phase.

2.1 Design (Programming)

A common way to begin the design of a system is representing it using an abstract

level. For example, for electronic circuits, the design begins in different levels of ab-

straction such as system blocks, register transfer levels (RTLs), gates, and transistors.

Analogous levels of abstraction exist for biological systems: multicellular organisms,

single cells, signaling pathways, genetic regulatory networks, proteins, and molecular

dynamics and reactions. In this research, we use molecular reactions as the abstract

level to design, analyze, and discuss target computing molecular systems.

6

7

Chemical reaction network (CRN) is commonly used as a describing and program-

ming language for molecular reactions. As we describe later in this chapter, CRNs

have well-defined theory and simulation software tools. Furthermore, due to the recent

advances in DNA nanotechnology, it is possible to map and synthesize nearly arbiter-

ary CRNs by DNA reactions. Thus, we can benefit from the advantages of CRNs by

selecting molecular reactions as the abstract level for the design phase.

A CRN consists of a set of molecular reactions. For example, the simple CRN,

represented in (2.1), is composed of two reactions; the first reaction in the first line and

the second reaction in the second line.

A+B
k1−→ C

2C
k2−→ A (2.1)

The first reaction says that one molecule of type A combines with one molecule of type

B to produce one molecule of type C. The rate constant, k1, denotes the speed of this

reaction. Similarly, the second reaction says that two molecules of C react and form

one molecule of A.

In the design phase, we synthesize chemical reactions such that, in terms of molecular

concentrations, the system produces a specific output for each input. In other words,

the output concentration is a desired function of the input concentration.

In the next phase, we discuss how the dynamic behavior of each chemical reaction

and the whole CRN can be quantitatively modeled and simulated.

2.2 Simulation (Modeling)

Assuming that molecular concentrations and reaction rate constants are well-defined,

there are two main models for simulation of CRNs: stochastic model and mass-action

kinetic model. Both models deal with molecular concentrations. However, the stochastic

model is used when the number of molecules is small (as small as hundreds of molecules)

8

and the mass-action kinetic model is applicable to systems with a sufficiently large

number of molecules.

In the stochastic model, the molecular concentrations are considered as discrete val-

ues, while in the mass-action kinetic model, the concentrations are continuous variables.

It has been shown that if the number of molecules increases, the stochastic model con-

verges to the mass-action kinetic model, and for molecular concentration of infinity,

both models are the same.

2.2.1 Stochastic model

Based on the stochastic model, each reaction is fired randomly provided there is

enough number of reacting molecules [8][9]. In fact, the probability of firing each reaction

is proportional to the rate constant and the number of reacting molecules available in

the system.

In the stochastic model, the behavior of the CRN is simulated by the sequence of

reactions. The firing probabilities are updated after the completion of each reaction.

Suppose for the CRN shown in (2.1), the initial concentrations of A, B, and C

are 15, 10, and 5 molecules, respectively. The firing probabilities for the first reaction,

P (R1), and the second reaction, P (R2), can be calculated as

P (R1) =
k1
(
15
1

)(
10
1

)
k1
(
15
1

)(
10
1

)
+ k2

(
5
2

)
and

P (R2) =
k2
(
5
2

)
k1
(
15
1

)(
10
1

)
+ k2

(
5
2

) .
Depending on which reaction takes place, the firing probabilities of reactions are

updated for the next reaction. The calculation can be continued until either there is

no possible firing reaction, the same pattern of firing reaction repeats, or a sufficiently

large number of reactions are completed. For a CRN, even with a particular initial con-

centration, the sequence of fired reactions is not the same if the simulation is repeated.

9

Therefore, the simulation is repeated enough times to obtain the distribution of the

final output.

2.2.2 Mass-action kinetic model

The second model, i.e., Mass-action kinetic model, is based on the mass-action

law, where the concentrations of molecules are continuous variables and their time

variation can be described by ordinary differential equations (ODEs). The concentration

of molecule A is denoted [A], and typically its unit is moles per liter. It is noticeable

that one mole is 6.02 × 1023 molecules, and the symbol M is used for moles per liter.

For the CRN shown in (2.1), the model leads to the following ODEs:

d[A]

dt
= −k1[A][B] + k2[C]2

d[B]

dt
= −k1[A][B]

d[C]

dt
= k1[A][B]− 2k2[C]2 (2.2)

In general, the ODEs produced by the mass-action model of CRNs can be solved by

standard numerical techniques, and thus one can generate the time variation dynamics

of molecular concentrations.

For both models, there are some software tools that perform simulations for different

CRNs accordingly. In this thesis, however, we use our own MATLAB code for the

stochastic kinetic model and a Mathematica code written by Caltech for the mass-action

kinetic model.

2.3 Implementation

One should notice that the contributions of this research are neither experimental

nor empirical; rather, they are constructive and conceptual. CRNs, as a fundamental

model of computation, are used to design systems for performing desired computations.

However, in order to validate practical aspects of our theoretical designs, we map them

10

to DNA reactions. These DNA reactions are then simulated to verify the functionality

and performance of the design.

There are three reasons behind why we choose DNA to validate the physical imple-

mentation of our designs:

1. DNA is a medium with biological origin. This means that DNA development of

our designs can be realized in vivo or in vitro and potential application of our designs

for smart drugs and protein monitoring.

2. DNA for the community of synthetic biology is like silicon for the electronics

community. As development of silicon devices has made it feasible to produce low-cost

complex electronic circuits, DNA technology is reducing the cost and time of construct-

ing artificial biological systems. Moreover, new synthesis technologies are increasing

the length and accuracy of the synthesized DNA molecules. Although it has not yet

been achieved, the technology is heading toward making the DNA design phase and the

DNA fabrication phase independent; designers only think of what DNA molecules they

should use and then let technology figure out how to realize them.

3. Much work was involved in developing automated tools that map CRNs to DNA

reactions. Fortunately, there are already some software tools that can produce DNA

reactions for CRNs. In this research we use such a tool that is a Mathematica code

developed by Caltech. The code produces DNA reactions for a given CRN and simulates

them based on the mass-action kinetic model. Such simulation predicts the behavior of

the actual DNA implementation with an acceptable accuracy.

We describe two approaches used to produce DNA reactions that can emulate the

kinetic of CRNs. Both approaches are based on the toehold-mediated DNA strand-

displacement reactions. Toehold-mediation was first introduced in [10] for the construc-

tion of DNA tweezers. We can map a molecular reaction to a set of DNA strand dis-

placement (DSD) reactions using the toehold mediated mechanism if we consider similar

strands of DNA as one molecular type.

11

Approach 1: We briefly describe the first approach of mapping chemical reactions

to DNA strand displacement reactions with an example. The reader is referred to

Soloveichik et al. for a detailed discussion of this mechanism [11]. The following is a

simple example.

Consider the DNA strand displacement reaction shown in Figure 2.1. Here, a single

strand of DNA R1 replaces the top strand of a double-strand DNA L; this generates

a double strand H and a single strand B (this reaction is reversible). One of the top

strands of the double strand H can be replaced by a single strand R2, generating a single

strand O. Then, O replaces the top strand of T , releasing P (note that the strands L,

G and T are “fuel” sources. It is assumed that there is an abundant source of these;

the concentrations do not matter). The signals are the concentrations of R1, R2 and

P . This sequence of strand displacements implements the abstract chemical reaction:

R1 +R2
k−→ P.

? 1 2 3

? 4 5 6

2 3 4 5 6
12
7

1* 2* 3*4* 5* 6*

5 6 12 7

1 2 3
?

1* 2* 3*

5 6

5* 6*

12
7

12 7

12* 7*
6*

8
9

qi

qmax

qmax

5 6
12
7

1 2 3
?

2* 3*4* 5* 6*1*

1 2 5 6
?

4

1* 2* 3* 5* 6*4* 4*

12* 7*6*

12 76
5

5 6 12 7

12 7 8 9

2 3 4
+

+

++

+

+

?qmax

R1 L H B

Waste OHR2

T Waste PO
+

Figure 2.1: An example of DNA strand displacement.

Approach 2: We describe the second approach for chemical reactions with the same

pattern, i.e., bimolecular reactions with one product. We use the template presented

in Figure 2.2 for the implementation of these reactions by DNA strand-displacement

reactions.

12

tba

a* tb*ta*

A

G1

trb

b* tr*

tqr

r* tq*

ta a tba

a* tb*ta*

B

G1

trb

b* tr*

tqr

r* tq*

tb b trb tr r tqr

i tci
C

tc c trc tr r tqr

tci

i* tc*

G2

trc

c* tr*

r

r* tq*

R1 R2 R3

R4R5R6

ta a

a* tb*ta*

G1
b* tr*

tqr

r* tq*

ta a tb b

a* tb*ta*

G1
b* tr* r* tq*

ta a tb b tr r

tci

i* tc*

G2

c

c* tr* r* tq*

tqri

i* tc*

G2
c* tr* r* tq*

tqrtrc

i* tc*

G2
c* tr* r* tq*

tqrtrctci

Figure 2.2: DNA implementation of A + B → C. According to the methodol-
ogy developed in [1], a sequence of six DNA strand displacement reactions, R1 − R6,
implement bimolecular reaction A+B → C.

Fig. 2.2 shows a sequence of six DNA reactions, R1-R6, that implement molecular

reaction A+B → C. All DNA reactions are based on the toehold mediated mechanism

first presented in [10]. The primary molecules, A, B, and C, are represented by single

strand DNA molecules – red strands in Fig. 2.2 – composed of a toehold and a main

domain part. The initial system provides required gate and auxiliary molecules, i.e.,

DNA molecules G1, G2, <tr r>, <c tr>, and <i tc> – black strands in Fig. 2.2.

Furthermore, the concentration of gate and auxiliary strands are initialized to be large

enough to efficiently supply the sequence of DNA reactions to continue as long as the

primary molecules last.

Each reaction in the sequence of DNA reactions produces the mediating toehold

for the next reaction. The sequence starts when the toehold domain of input molecule

A, i.e., ta, binds with its WatsonCrick complementary domain in gate G1, i.e., ta*.

This leads to the binding of whole molecules of A to gate G1. Similarly, through

reaction R2, the DNA molecule B binds to gate G1, and in Reaction R5, the output

DNA molecule C is released from gate G2. For details of the mechanism, the reader

is referred to [1]. The authors in [1] have experimentally validated that the sequence

of DNA strand displacement reactions in Fig. 2.2 do implement the expected kinetics

13

for the desired bimolecular reaction. They also showed that the rate constant can be

tuned by adjusting the initial concentrations of gates and auxiliary molecules. The

linear, double-stranded DNA molecules used in the mechanism can be derived from

biologically synthesized (plasmid) DNA. Compared to the first approach, for the second

approach, compatibility with natural DNA leads to the reduction of errors associated

with chemically synthesized DNA.

The following chapters discuss molecular implementation of signal processing and

other forms of computations using the development process described in this chapter.

Chapter 3

Asynchronous Discrete-time

Signal Processing

General signal processing algorithms can be specified in terms of two basic modules:

computation and delay (memory) units. The computation module is mainly composed

of multiplication and addition, and its molecular implementation has been realized in

prior work [12][2]. The most challenging parts of molecular implementation of signal

processing algorithms, however, are delay (memory) units and signal transfer among

delay units and computation units. In this chapter we discuss a methodology to im-

plement signal processing systems including delay units. We propose a framework that

controls signal flow among computation and delay units. This framework is called fully

asynchronous schemes.

3.1 Prior Work

For discrete-time systems the corresponding computations start after the inputs are

sampled at specific points in time. In these systems the timings of signal transfers need

to be synchronized in order to avoid any interference in computations. The concept

14

15

of a computational cycle in a molecular system is critical. Two different synchroniza-

tion schemes have been proposed in prior work; these include: fully-synchronous and

globally-synchronous locally-asynchronous. Fully synchronous systems are synchronized

by a two-phase clock [13, 2]. In a globally-synchronous locally-asynchronous systems,

three proteins, referred as Red (R), Green (G) and (Blue) are introduced. The transfer

of R to G, G to B and B to R completes a computational cycle. The global RGB

clock provides global synchronization [14, 2]. Typically, RGB clocked systems are faster

than the fully-synchronous systems, as the latter involve more phases of transfers. The

protein transfer operation is a slow operation and is the bottleneck in molecular systems

with respect to sample period. Although fully-synchronous systems require a two-phase

clock, this clock is designed from a 4-phase protein transfer mechanism. This section

presents a brief review of the fully-synchronous and the RGB systems.

All reactions in the discrete-time system are implemented using only two coarse

rate categories for the reaction rate constants, i.e., kfast and kslow. Given reactions

with any such set of rates, the computation is correct. It does not matter how fast the

fast reactions are or how slow the slow reactions are - only that all fast reactions fire

relatively faster than slow reactions. We illustrate both schemes with a simple example,

a moving-average filter. In fact, it is a first-order discrete-time low-pass filter. The

circuit diagram for the filter is shown in Figure 3.1. It produces an output value that is

one-half the current input value plus one-half the previous value. Given a time-varying

input signal X, the output signal Y is a moving average, i.e., a smoother version of

the input signal. Since there is no feedback in the system, it is called a finite impulse

response (FIR) filter [15].

3.1.1 Fully-Synchronous Framework

In this framework a global clock signal synchronizes signal transfers in the system.

For a molecular clock, reactions are chosen that produce sustained oscillations in terms

of chemical concentrations. With such oscillations, a low concentration corresponds

16

X

Y

0.5 0.5

D

Input

Output

Figure 3.1: Block diagram for the moving-average filter [2].

to a logical value of zero; a high concentration corresponds to a logical value of one.

Techniques for generating chemical oscillations are well established in the literature.

Classic examples include the Lotka-Volterra, the Brusselator, and the Arsenite-Iodate-

Chlorite systems [16, 17]. Unfortunately, none of these schemes is quite suitable for

synchronous sequential computation: the required clock signal should be symmetrical,

with abrupt transitions between the phases. A new design was proposed in [2] and

[13] for multi-phase chemical oscillator. For a 4-phase oscillator the phases can be

represented by molecular types R, G, B, V. First consider the reactions

2Sr
kslow−→ r + 2Sr

2Sg
kslow−→ g + 2Sg

2Sb
kslow−→ b+ 2Sb

2Sv
kslow−→ v + 2Sv

(3.1)

R+ r
kfast−→ R

G+ g
kfast−→ G

B + b
kfast−→ B

V + v
kfast−→ V.

(3.2)

In reactions (3.1), the molecular types r, g, b, v are generated slowly and constantly,

from source types Sr, Sg, Sb, Sv, whose concentrations do not change with the reactions.

17

In reactions (3.2), the types R, G, B, V quickly consume the types r, g, b, v, respectively.

Call R, G, B, V the phase signals and r, g, b, v the absence indicators. The latter are

only present in the absence of the former. The reactions

R+ v
kslow−→ G

G+ r
kslow−→ B

B + g
kslow−→ V

V + b
kslow−→ R

(3.3)

transfer one phase signal to another, in the absence of the previous one. The essential

aspect is that, within the R, G, B, V sequence, the full quantity of the preceding type

is transferred to the current type before the transfer to the succeeding type begins. To

achieve sustained oscillation, we introduce positive feedback. This is provided by the

reactions

2G
kslow−−−⇀↽−−−
kfast

IG

R+ IG
kslow−→ 3G

2B
kslow−−−⇀↽−−−
kfast

IB

G+ IB
kslow−→ 3B

2V
kslow−−−⇀↽−−−
kfast

IV

B + IV
kslow−→ 3V

2R
kslow−−−⇀↽−−−
kfast

IR

V + IR
kslow−→ 3R

(3.4)

Consider the first two reactions. Two molecules of G combine with one molecule of R to

produce three molecules of G. The first step in this process is reversible: two molecules

of G can combine, but in the absence of any molecules of R, the combined form will

dissociate back into G. So, in the absence of R, the quantity of G will not change much.

In the presence of R, the sequence of reactions will proceed, producing one molecule of

G for each molecule of R that is consumed. Due to the first reaction 2G
kslow−→ IG, the

18

transfer will occur at a rate that is super-linear in the quantity of G; this speeds up the

transfer and so provides positive feedback. Suppose that the initial quantity of R is set

to some non-zero amount and the initial quantity of the other types is set to zero. We

will get an oscillation among the quantities of R,G,B, and V .

One requirement for a clock in synchronous computation is that different clock

phases should not overlap. A two-phase clock is used for synchronous structures: con-

centrations of molecular types representing clock phase 0 and clock phase 1 should not

be present at the same time. To this end, two nonadjacent phases, say R and B in a

four-phase RGBV oscillator, are chosen as the clock phases. The scheme for chemical

oscillation works well. Figure 3.2 shows the concentrations of R and B as a function of

time, obtained through differential equation simulations of the Reactions (3.1), (3.2),

(3.3), and (3.4). It may be noted that the two phases R and B are essentially non-

overlapping.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

TimeHhrsL

C
on

ce
nt

ra
tio

nH
nM

L

B

R

Figure 3.2: simulation results for R and B phases of a four-phase oscillator [2].

The delay and computation elements for the moving average filter in Figure 3.3 are

implemented by the reactions in Figure 3.4. As Figure 3.3 shows each delay element,

D, is modeled by two molecular types, D and D′. In the presence of B, the input

signal X is transferred to molecular types A and C; these are both reduced to half and

transferred to D′ and Y , respectively. In the presence of R, D′ is transferred to D.

19

Figure 3.3: Block diagram for synchronous implementation of the moving-average fil-
ter [2].

S1 S2

𝐵 + 𝑋
𝑘𝑠𝑙𝑜𝑤
 𝐴 + 𝐶 + 𝐵

2 𝐴
𝑘𝑓𝑎𝑠𝑡
 𝐷′

2 𝐶
𝑘𝑓𝑎𝑠𝑡
 𝑌

𝐵 + 𝐷
𝑘𝑠𝑙𝑜𝑤
 𝑌 + 𝐵

𝑅 + 𝐷′
𝑘𝑠𝑙𝑜𝑤
 𝐷 + 𝑅

Figure 3.4: Set of molecular reactions for the synchronous implementation of the
moving-average filter [2].

Therefore, in the following phase B, half of the new sample adds with the half of the

previous sample stored in D.

3.1.2 Globally-Synchronous Locally-Asynchronous Framework (RGB)

The globally-synchronous locally-asynchronous framework is illustrated in Figure 3.5.

It contains no clock signal; rather it is ”self-timed” in the sense that a new phase of the

computation begins when an external sink removes the entire quantity of molecules Y ,

i.e., the previous output value, and supplies a new quantity of molecules X, i.e., the cur-

rent input value. Each delay element in this framework is modeled by three molecular

20

types, namely RGB. Figure 3.6 shows how the computations in asynchronous frame-

work are performed in three phases and how delay elements are implemented using three

molecular types Ri, Gi, Bi.

Figure 3.5: Block diagram for the asynchronous implementation of the moving-average
filter [2].

(i)

(ii)

Figure 3.6: (i) Implementing delay elements using the 3-phase asynchronous scheme.
(ii) Cascaded delay elements implemented using asychronous scheme [2].

In this framework, the moving-average filter is implemented by the reactions in

Figure 3.7. The molecular types corresponding to signals are X, A, C, R, G, B, and

Y . To illustrate the design, we use colors to categorize some of these types into three

categories: Y and R in red; G in green; and X and B in blue. The group of the first

21

three reactions shown in the S1 column of Figure 3.7 transfers the concentration of X

to A and to C, a fanout operation. The concentrations of A and C are both reduced

to half, scalar multiplication operations. The concentration of A is transferred to the

output Y , and the concentration of C is transferred to R. The transfer to R is the first

phase of a delay operation. Once the signal has moved through the delay operation, the

concentration of B is transferred to the output Y . Since this concentration is combined

with the concentration of Y produced from A, this is an addition operation. The final

group of three reactions shown in the S1 column of Figure 3.7 implements the delay

operation. The concentration of R is transferred to G and then to B. Transfers between

two color categories are enabled by the absence of the third category: red goes to green

in the absence of blue; green goes to blue in the absence of red; and blue goes to red

in the absence of green. The reactions are enabled by molecular types r, g, and b that

we call absence indicators. The absence indicators ensure that the delay element takes

a new value only when it has finished processing the previous value.

S1 S2 S3 S4

𝑔 + 𝑋
𝑘𝑠𝑙𝑜𝑤
 𝐴 + 𝐶

2 𝐴
𝑘𝑓𝑎𝑠𝑡
 𝑌

2 𝐶
𝑘𝑓𝑎𝑠𝑡
 𝑅

𝑏 + 𝑅
𝑘𝑠𝑙𝑜𝑤
 𝐺

𝑟 + 𝐺
𝑘𝑠𝑙𝑜𝑤
 𝐵

𝑔 + 𝐵
𝑘𝑠𝑙𝑜𝑤
 𝑌

2 𝑅
𝑘𝑓𝑎𝑠𝑡
 2𝑅 + 𝑅′

2 𝑌
𝑘𝑓𝑎𝑠𝑡
 2𝑌 + 𝑅′

2 𝐺
𝑘𝑓𝑎𝑠𝑡
 2𝐺 + 𝐺 ′

2 𝐵
𝑘𝑓𝑎𝑠𝑡
 2𝐵 + 𝐵′

2 𝑋
𝑘𝑓𝑎𝑠𝑡
 2𝑋 + 𝑅′

2 𝑅′
𝑘𝑓𝑎𝑠𝑡
 ∅

2 𝐺′
𝑘𝑓𝑎𝑠𝑡
 ∅

2 𝐵′
𝑘𝑓𝑎𝑠𝑡
 ∅

2𝑆𝑟
𝑘𝑠𝑙𝑜𝑤
 2𝑆𝑟 + 𝑟

2𝑆𝑔
𝑘𝑠𝑙𝑜𝑤
 2𝑆𝑔 + 𝑔

2𝑆𝑏
𝑘𝑠𝑙𝑜𝑤
 2𝑆𝑏 + 𝑏

𝑅′ + 𝑟
𝑘𝑓𝑎𝑠𝑡
 𝑅′

𝐺 ′ + 𝑔
𝑘𝑓𝑎𝑠𝑡
 𝐺′

𝐵′ + 𝑏
𝑘𝑓𝑎𝑠𝑡
 𝐵′

𝑅′ + 𝑋
𝑘𝑓𝑎𝑠𝑡
 𝐴 + 𝐶

𝐺 ′ + 𝑅
𝑘𝑓𝑎𝑠𝑡
 𝐺

𝐵′ + 𝐺
𝑘𝑓𝑎𝑠𝑡
 𝐵

𝑅′ + 𝐵
𝑘𝑓𝑎𝑠𝑡
 𝑌

Figure 3.7: Set of molecular reactions for the asynchronous implementation of the
moving-average filter [2].

22

In the group of reactions shown in the S2 column of Figure 3.7 molecules of types R′,

G′, and B′ are generated from the signal types that we color-code red, green, and blue,

respectively. The concentrations of the signal types remain unchanged. This genera-

tion/consumption process ensures that equilibria of the concentrations of R′, G′, and B′

reflect the total concentrations of red, green, and blue color-coded types, respectively.

Accordingly, we call R′, G′, and B′ color concentration indicators. They serve to speed

up signal transfers between color categories, and provide global synchronization.

In the group of reactions shown in the S3 column of Figure 3.7, molecules of the

absence indicator types r, g, and b are generated from external sources Sr, Sg, and

Sb. At the same time, they are consumed when R′, G′, and B′ are present, respectively.

Therefore, the absence indicators only persist in the absence of the corresponding signals:

r in the absence of red types; g in the absence of green types; and b in the absence of

blue types. They only persist in the absence of these types because otherwise ”fast”

reactions consume them quickly.

Finally, the reactions shown in the S4 column of Figure 3.7 provide positive feedback

kinetics. These reactions effectively speed up transfers between color categories as

molecules in one category are ”pulled” to the next by color concentration indicators.

Note that the concentration of the input X is sampled in the green-to-blue phase. The

output Y is produced in the blue-to-red phase.

Although the RGB scheme doesn’t have an independent global clock signal it pro-

vides a global synchronization by categorizing signals into three phases, so called RGB

phases. Many local RGB blocks enable locally-asynchronous computation while global

color concentrations, R′,G′,B′, provide global synchronization. In fact, they form a

nonsymmetric clock dependent on the signal values of local RGB blocks.

23

3.2 Fully Asynchronous Scheme

This section presents an asynchronous 4-phase method for implementing discrete-

time signal processing algorithms with molecular reactions. The proposed synthesis flow

guarantees a conflict-free scheduling for any arbitrary DFG related to a DSP operation

including computations and delay elements.

We present a new approach for designing and implementing discrete-time signal

processing algorithms with molecular reactions. In the new framework, each delay

element of the structure is assigned two molecular types, Di and D′i. Transferring

signals among delay elements is implemented by transferring concentrations between

molecular types assigned to delay elements. The entire computation is completed in

four phases. Signal transfers in each phase are triggered by the absence indicators

of the other phases. In the proposed scheme, two types of transfer are not allowed.

These restrictions are illustrated in Figure 1. First, all outgoing edges of a node must

be scheduled in the same phase. Figure 3.8 illustrates a violation of this constraint.

Second, if outgoing edges of a node are scheduled at phase “i”, none of its incoming

edges can be scheduled at phase “i + 1”. Figure 1(b) illustrates a violation of this

constraint.

A synthesis approach for mapping any DSP algorithm to molecular reactions is

described as follows:

1- Draw the data flow graph (DFG) according to the block diagram of the DSP algo-

rithm. Replace the output node y by nodes y and y′, and each delay element Dk by a

pair of nodes Dk and D′k.

2- Assign phase 1 to the outgoing edges of the input node and the outgoing edges of

each D′k node.

3- Assign phase 2 to the fan out edge of output node (y).

4- All edges between Dk and D′k are scheduled to phase 3.

5- The outgoing edge of y′ is scheduled to phase 4.

24

(a)

y y1

y2

(b)

Figure 3.8: Two types of signal transfer not allowed in our molecular scheme: (a)
Outgoing edges scheduled in different times (b) Incoming edge with assigned phase i+1
for a node with outgoing edge assigned to phase i.

6- The molecular reactions for absence indicators, computations, and signal transfers

are synthesized according to the assigned scheduling phases.

The proposed 4-phase method is now illustrated by three DSP operations: an FIR filter,

a first-order IIR filter and an FFT computation for real-valued signals.

a. FIR filter : Figure 3.9(a) shows a three-tap FIR filter. For simplicity, all tap

coefficients are assumed to be 1. The flow graph in Figure 3.9(b) illustrates the phase

assignments.

The molecular reactions producing the absence indicator for each phase of this flow

graph are described by (3.5). ai’s (i = 1, 2, 3, 4) denote the absence indicators for phase

i.

src
ks−→ a1 + a2 + a3 + a4

Phase 1: a1 + x
kf−→ x

a1 +D′1
kf−→ D′1

25

(a)

(b)

1

1

1

1
1

x
D1 D2 D’2D’1

y

y’

2

33

4

Figure 3.9: A three-tap FIR filter: (a) Block diagram, (b) Data flow graph and schedul-
ing based on the proposed method.

a1 +D′2
kf−→ D′2

Phase 2: a2 + y
kf−→ y (3.5)

Phase 3: a3 +D1
kf−→ D1

a3 +D2
kf−→ D2

Phase 4: a4 + y′
kf−→ y′

Then, reactions (3.6) provide the signal transfers associated with related absence

indicators. Signal transfers of each phase are enabled by the absence indicator of the

previous phase. Note that these are all slow reactions.

Phase 1: x+ a4
ks−→ D1 + y

D′1 + a4
ks−→ D2 + y

D′2 + a4
ks−→ y

26

Phase 2: y + a1
ks−→ y′ (3.6)

Phase 3: D1 + a2
ks−→ D′1

D2 + a2
ks−→ D′2

According to reactions (3.5) and (3.6), molecules of x, D′1, and D′2 transfer in the first

phase. After all molecules of x, D′1, and D′2 are transferred, phase 2 starts and y is

transferred to y′. In phase 3, D1and D2 transfer, respectively, to D′1 and D′2 after all

molecules of y transfer to y′. Concentration of D′1and D′2 are stored to be used for the

computation of the next output. Thus, each pair of Di and D′i (i = 1, 2) functions as

a delay element.

One should notice that the final output y′ is collected whenever the absence indicator

of the third phase, a3, is nonzero, implying the third phase has been completed. While

the new input is also injected at the same time, it is not used by the system until all

molecules of y′ are collected.

b. IIR Filter : As another simple DSP operation, we describe the 4-phase method for

a simple first-order IIR filter. The block diagram of this filter is shown in Figure 3(a).

The filter contains a multiplication by 0.5 inside a feedback loop. From steps 1 to 5 of

the synthesis flow, the scheduled 4-phase flow graph for the filter is obtained as shown

in Figure 3.10(b).

The set of required absence indicator reactions are illustrated in (3.7).

src
ks−→ a1 + a2 + a3 + a4

Phase 1: a1 + x
kf−→ x

a1 +D′1
kf−→ D′1

Phase 2: a2 + y
kf−→ y (3.7)

Phase 3: a3 +D1
kf−→ D1

Phase 4: a4 + y′
kf−→ y′

27

(a)

(b)

x y y’

D’1 D1

1

1

2

23

4

D

+

x

x y

0.5

Figure 3.10: An IIR filter: (a) Block diagram, (b) Data flow graph and scheduling for
molecular implementation.

Signal transfers and computations are implemented by the reactions in (3.8).

Phase 1: x+ a4
ks−→ y

D′1 + a4
ks−→ Ty

2Ty
kf−→ y

Phase 2: y + a1
ks−→ y′ + D1 (3.8)

Phase 3: D1 + a2
ks−→ D′1

Note that the third reaction in (3.8), related to the multiplication by 0.5, fires

to completion much faster than the transfer reactions. Each two Ty molecules are

immediately combined to produce one y molecule. In other words, D′1 is transferred to

temporary molecules Ty and in the same phase, Ty is multiplied by 0.5 to produce y.

The presented method can be easily generalized for DSP algorithms with more than

one input/output. The following example illustrates such an algorithm with four inputs

and four outputs.

28

c. Real-valued FFT (RFFT): Discrete Fourier transform (DFT) computes the

spectral contents of a signal at various frequencies. Fast Fourier transform (FFT) com-

putes DFT using a fast approach when the number of required multiplications can be

reduced from O(N2) to O(Nlog2N) [13]. We implement FFT, as a canonical algorithm

in DSP, with molecular reactions. Molecular implementation of FFT can be used to

monitor the frequency content of a protein over time in applications such as drug deliv-

ery or cell growth modeling. Like all of the physical signals the concentration of input

molecules is a real-valued signal. Therefore, we consider implementation of an FFT

system with real-valued inputs, called RFFT. Figure 3.11(a) shows the block diagram

for a 4-parallel 8-point RFFT. 8 samples of the input signal, x(n), arrive in two stages.

In the first stage, x(0) to x(3) arrive while multiplexers choose their select input s1. In

the second stage x(4) to x(7) arrive and multiplexers select input s2. All of the internal

datapaths For an RFFT structure can be real-valued (not complex-valued) datapaths

[14]. For more information about RFFT the reader is referred to [15].

The proposed synthesis method assigns scheduling of phases to the flow graph as

shown in Figure 3.11(b). Multiplexers in Figure 3.11(a) are implemented as shown in

Figure 3.12.

As figure 3.12 shows when s1 is nonzero x transfers to z and when s2 is nonzero

y transfers to z. So signal s1 and s2 are control signals for multiplexers. In the first

stage s1 is nonzero while s2 is zero. At the end of each stage s1 and s2 toggle to be

ready for the next stage. For this purpose, in the second phase s1 transfers to s2′ and

s2 transfers to s1′ simultaneously. Then in the fourth phase, s2′ transfers to s2 and s1′

transfers to s1. The circular flow graph at the bottom of Figure 3.11(b) represents the

toggling of s1 and s2. This flow graph is implemented by the reactions in (3.5).

s1 + a1
ks−→ s2′

s2′ + a3
ks−→ s2

29

(a)

(b)

s1

s1

s1

s1

s1

s1

s2

s2

s2

s2 s1

s2

s2

s2

s1

s2

s2

s2

s1

s1

s1

S1 S2

1

1

1

1

1 1

1

2

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

1

1

3

3

33

3

3

5

3

2

1

6

1

1

1

2

4

4

4

4

4

4

S2

S1

S1

S2

S2

S1

S1

S2

S1

S2

S2

S1

S1

S2

S2

S1

S1

S2

S2

S1

S1

S2

S2

S1

Figure 3.11: 4-parallel 8-point RFFT: (a)Block diagram, (b)Data flow graph and
scheduling obtained by the proposed method.

x z

y z

s1

s2

x

y

zx

y
z

s1

s2

Figure 3.12: Implementation of multiplexer by molecular reactions.

30

s2 + a1
ks−→ s1′ (3.5)

s1′ + a3
ks−→ s1

Similar to FIR and IIR filters, the reactions related to the computation, signal transfer,

and absence indicators for each phase can be synthesized from the flow graph in Figure

3.11(b). Multiplication by
√
2
2 is implemented using (12 + 1

8 + 1
16) approximation.

In general a signal value can be negative, while concentration of a molecular type

can’t be negative. Therefore, we use one molecular type for positive and another one

for negative part of each signal. We perform computations and signal transfers for each

part independently. Finally these two parts cancel out each other and the one with

larger concentration determines the sign and value of the signal [5]. For example xp and

xn represent positive and negative part of signal x, and (3.6) describes positive-negative

cancellation reaction by transferring equal concentrations of positive and negative parts

to an external sink, φ.

xp + xn
kf−→ φ (3.6)

In order to improve the accuracy and speed of the implemented molecular systems, we

add three sets of reactions to them. We call these reactions: threshold, negative feedback,

and positive feedback reactions.

Threshold reactions: When a type of molecule exists in the system, its absence indicator

is nearly zero but not exactly zero. Although they are very slow a small nonzero value

of absence indicator can fire the next phase reactions before completion of the current

phase reactions. To avoid this, we initially inject a small concentration of so-called

threshold molecules, Tx. The first reaction in (3.11) is a fast reaction. Thus, the absence

indicator molecules, ax, can’t fire slow reactions before consuming Tx. In other words,

the concentration of ax must be more than the concentration of Tx, in order to fire

signal transfer reactions. When x is present, the second reaction in (3.11) replenishes

31

the threshold molecules Tx.

ax + Tx
kf−→ φ

x+ ax
kf−→ x+ Tx (3.11)

Negative feedback reactions: The absence indicator molecules, ax, are produced con-

stantly from the src. If x doesn’t exist for a while, the concentration of ax becomes

larger and larger. Then when x is produced it takes more time to consume all molecules

of ax. The first reaction in (3.12) limits the increase of ax concentration. The second

reaction in (3.12) controls Tx in the same manner.

2ax
ks−→ ax + Tx

2Tx
ks−→ ax + Tx (3.12)

Positive feedback reaction: As shown in Figure 3.13, in positive feedback reactions,

destination of a signal transfer, z, is used to speed up the signal transfer y to z. In

other words, when the first reaction in Figure 3.13 starts, second reaction speeds up its

completion.

x y z

Figure 3.13: Speeding up signal transfers by positive feedback.

3.3 SIMULATION RESULTS

The molecular reactions are mapped to DNA-strand displacement reactions. Critical

for mapping to DNA strands, all of our reactions are bimolecular reactions [9]. We

32

simulated the kinetic of reactions in our designs exploring the mechanism and software

tools for DNA-strand displacement developed by Winfree’s group at Caltech.

For all DNA simulations for the presented designs we used the following parameters:

The initial concentration of auxiliary complexes, Cmax = 10−5M , the maximum strand

displacement rate constant, qmax = 106M−1s−1, ks = 5.56 × 104M−1s−1 and kf =

10× ks. The initial concentration for the source molecular type, src, is set to 0.2 nM .

The simulation results for the FIR and IIR filters are shown in Figure 3.14 and Figure

3.15, respectively.

Input

Theoretical output

Simulated output

Figure 3.14: Simulation results for FIR filter.

The input is a time-varying signal x with both high frequency and low frequency

components. The output is a time-varying concentration y′. For the FIR filter, molecules

of x are injected into the system and molecules y′ are collected from the system every

20 hours. For IIR filter the injection/collection time is every 30 hours. The Figures

show the theoretical outputs as well as simulated outputs. The simulated outputs track

the theoretical outputs with some errors. The errors come mainly from the leakage

among molecular types. Although it has one more delay element and more number of

33

Input

Theoretical output

Simulated output

Figure 3.15: Simulation results for IIR filter.

signal transfers, the average relative error for the FIR filter is less than the IIR filter.

Generally speaking, IIR filters have higher errors than FIR filters since feedback in such

filters leads to error accumulation. Therefore, we considered longer interval between

output collections for IIR filter in order to improve its output accuracy.

For an 8-point 4-parallel RFFT implementation, the simulation results are illustrated

in Figure 3.16.

Concentrations for the inputs in the first and second stages and their corresponding

theoretical outputs are tabulated in Table 1. The injection for inputs and collection for

outputs are scheduled once every 250 hours.

Table 2 summarizes the simulation results of the three operations, namely, the FIR

filter, the IIR filter, and the RFFT transform in the proposed framework. The errors

in this table are computed as the difference between the output value obtained by

simulation, os, and the theoretical output, ot. Table 2 shows that as the complexity of

operation is increased, or equivalently the number of reactions in the system is increased,

the calculation time and the output error increase.

34

I1

I2

O1

O3

I3

I4

O2

O4

(a)

(b)

Figure 3.16: Simulation results for 8-point RFFT.

35

3.4 COMPARISON

To evaluate the performance of our presented method, we compare the RFFT imple-

mentation with prior work in Table 3. As the table shows our 4-phase implementation

is the fastest one; however, its accuracy is degraded. It is noticeable that even if we

allow longer calculation time for 4-phase RFFT, it doesn’t improve its output accu-

racy significantly. The 4-phase and synchronous schemes have less number of reactions

and reactants compared to the RGB scheme. However, the number of reactants is not

a limiting factor because DNA strands can easily generate a vast number of reactant

types.

Although the in-vitro simulation results using DNA strands validate the functionality of

the method, it is essential to improve the speed and robustness of the method. Future

work will be directed towards synthesis of signal processing functions using DNA with

one to two orders of magnitude faster sampling rates.

Chapter 4

Mixed-Signal Molecular

Computing Systems

Computing or signal processing systems can either be analog or discrete-time. In

analog processing, the input and output correspond to continuous-time signals. In

discrete-time processing, the continuous-time signal is first sampled using a sampler,

then processed in discrete time steps, and finally converted to a continuous-time signal

if necessary by some form of interpolation. If the sampled signal in a discrete-time sys-

tem is also discretized in amplitude, then it is referred to as a digital signal. A digital

signal processing (DSP) system requires an analog-to-digital converter (ADC), process-

ing of digital signals and finally a digital-to-analog conversion (DAC). Most information

processing systems today store, process or transmit digital information. Discrete-time

signal processing provides significantly higher accuracy than continuous-time since the

delay elements can be realized with high-precision. In [18], it was recognized that the

strength of a molecule was significantly degraded in an analog delay line with increase

in the order of the system or the number of delays. In contrast, delay lines implemented

in a discrete-time molecular or DNA system do not suffer from significant degradation.

Digital processing provides even higher robustness and precise control in processing

36

37

the signal in temporal or spectral domain than discrete-time signals. We differentiate

discrete-time as sampled in time but continuous in amplitude and digital as sampled in

time and discretized in amplitude.

This chapter presents synthesis of molecular computing systems that can be ana-

log, discrete-time or digital. Analog and discrete-time processing of molecular systems

have been considered in prior work. Synthesizing molecular and DNA reactions to

implement continuous-time linear filters was first presented in [19]. Signal processing

systems, implemented as either discrete-time or digital, contain delay elements. De-

lay elements transfer the molecules from their inputs to outputs without altering the

concentration every computation cycle. Delay elements were first synthesized using

molecular reactions in [2]. As described in Chapter 3, these systems can operate either

in a fully-synchronous manner [13] using a two-phase clock, or in a locally-asynchronous

globally-synchronous manner [2, 14], or in a fully-asynchronous manner [20] and [21].

The goal of this chapter is two-fold. First, this chapter presents a review of past work

on continuous-time and discrete-time processing systems. Second, a new methodology

to synthesize molecular ADCs and molecular DACs are presented. Molecular and DNA

implementations of a complete digital processing system using ADC, digital computing

and DAC are presented. These molecular designs can be scaled up with respect to

their complexity. However, due to the resource limitation in living cells, they are more

suitable for in vitro implementation, particularly by DNA.

One should notice that discrete-time continuous-amplitude molecular systems are

not reviewed in this chapter because they have been discussed in Chapter 3.

4.1 Molecular Continuous-Time Systems

Molecular implementations of continuous-time or analog systems have been de-

scribed in many past publications [22]-[25]. Study of analog molecular systems is impor-

tant since it has been proven that computations in living cells are mostly analog [22]-[24].

38

Analog computations can be implemented with chemical reaction networks (CRNs)

efficiently with respect to the number of reactions and molecular species. For example,

as presented for the first time in [24] and [25], implementing a molecular adder via

analog computation is simple: we have two input concentrations to be added; both are

transferred to the same molecular type by means of two independent reactions. In one

application of an in vivo analog adder, two inputs may correspond to regulating the

expressions of a common protein from two independent genetic promoters [24]. Analog

multiplication can be simply implemented by two molecular reactions [26]:

x+ y
k1−→ x+ y + z

z
k2−→ ∅

(4.1)

From mass-action kinetics model we have

dz

dt
= k1xy − k2z (4.2)

where x,y, and z are molecular concentrations of their corresponding molecular types.

In the steady-state dz
dt = 0, thus, z = k1

k2
xy. The output z represents a scaled version

of the product xy. Analog implementation of more complex functions such as square

roots and logarithmic additions have been presented in [25]. Implementation of linear

continuous-time systems with biochemical reactions has been presented in [19]. We

briefly describe this method with an example. Each signal, u, is represented by the

difference in concentration between two particular molecular types, u+ and u−, where

u+ and u− are defined as:

u+ =

{
u if u > 0

0 otherwise
(4.3)

and

u− =

{ |u| if u < 0

0 otherwise.
(4.4)

Any linear continuous-time system can be implemented using three building blocks:

integrator, gain and summation. Using mass-action kinetics model, these blocks can be

39

approximated by a minimal set of chemical reactions, referred as: catalysis, degradation,

and annihilation reactions described by (4.5), (4.6), and (4.7), respectively.

u±
γ−→ u± + y± (4.5)

u±
γ−→ ∅ (4.6)

u+ + u−
η−→ ∅, (4.7)

where γ and η ∈ R+. Reaction (4.5) is a concise representation of the following two

reactions:

u+
γ−→ u+ + y+

u−
γ−→ u− + y−.

(4.8)

This notation is also adopted for other reactions with double superscripts. For each

molecular type, an annihilation reaction is necessary to ensure a minimal representation

of the molecule. For example, if y is used in a reaction network, the reaction y++y− −→

∅ should be added.

Integration: Reactions (4.9) implement integration, y(t) =
∫ t
0 u(τ)dτ + y(0) with

t ∈ R:

u±
α−→ u± + y±, (4.9)

where α ∈ R+. For these reactions we have

dy+

dt = αu+

dy−

dt = αu−

}
⇒ dy

dt = dy+

dt −
dy−

dt (4.10)

= αu+ − αu− = αu⇒ y(t) = α
∫ t
0 u(τ)dτ + y(0). (4.11)

Gain and Summation: The following reactions output a linear combination of the

input signals, ui, with corresponding gain ki.

u±i
γki−→ u±i + y±

y±
γ−→ ∅,

(4.12)

40

where y represents the output, ki, γ ∈ R+ for i ∈ 1, 2, ..., n. In the special case n = 1, this

chemical representation approximates the gain block, y = k1u1 for k ≥ 0. For n ≥ 2 this

chemical representation approximates the summation block, y =
∑n

i=1 kiui [19]. Sup-

pose U(s) and Y (s) represent the Laplace transforms of input and output, respectively.

Any linear I/O system with the transfer function Y (s)
U(s) = B(s)

A(s) can be approximated by us-

ing integration, gain, and summation blocks where B(s) = bns
n+bn−1s

n−1+...+b1s+b0

and A(s) = sm + am−1s
m−1 + ...+ a1s+ a0 and m ≥ n. Figure 4.1 illustrates how Y (s)

U(s)

can be constructed using these basic building blocks [27, 28].

ʃ ʃ b0

am-1

am-2

ʃ

a0

b1

bn

y(t)u(t)
ʃ

Figure 4.1: Constructing linear I/O systems based on transfer function Y (s)
U(s) = B(s)

A(s) ,
using integration, gain, and summation blocks.

A PI controller has been implemented in [19] using these blocks. Here, we illustrate

an example molecular implementation of a first-order low-pass continuous-time filter,

shown in Figure 4.2. The transfer function for this filter is 1
s+a0

. It can be approximated

by the following reactions:

x(t) = u(t)− a0y(t)→

{
y±

γa0−→ y± + x∓

u±
γ−→ u± + x±

x±
γ−→ ∅

x+ + x−
η−→ ∅

u+ + u−
η−→ ∅

(4.13)

41

dy

dt
= x(t)→

{
x±

γ−→ x± + y±

y+ + y−
η−→ ∅

(4.14)

ʃ

a0

u(t) y(t)x(t)

Figure 4.2: A first order low-pass continuous-time filter.

4.2 Digital Sensing and Computing Molecular Systems

Although analog computing systems are important due to their efficiency and their

application in in vivo systems, digital computing systems are more robust [29, 24, 30].

In fact, regardless of the implementation technology, the fundamental reason for the

robustness of the digital computation lies in information theory: information is coded

across many 1-bit-precise interacting computational channels in the digital approach

but on one channel in the analog approach [24].

Although complex molecular digital systems may be impractical today, these will

be practical in near future as synthetic biology is seeing remarkable progress for syn-

thesizing more complex systems in vitro especially from DNA. As a practical in vitro

example, implementation of a scalable digital system, so called seesaw gates, with DNA

strand-displacement reactions have been used to implement simple logical AND/OR

gates, and 2-bit-precise square roots in [30].

Roughly speaking, in a digital molecular system, absence or existence of a molecular

type defines whether the related signal is logically ’0’ or ’1’, respectively. More precisely,

if the concentration of a molecular type is close to 0 nM it represents logical ’0’, while

if it is close to a distinguishable nonzero value, it represents logical ’1’. In this chapter,

42

for in vitro DNA implementations, we consider concentrations near 1 nM as the logical

value ’1’ and near 0 nM as logical value ’0’.

Molecular digital systems require molecular analog-to-digital conversion (ADC).

This section, presents a new molecular implementations of ADCs and DACs. Figure 4.3

illustrates a complete digital system.

DACADC

output

Digital Logic
Circuit

input

Figure 4.3: Block diagram of a general system developed in this chapter.

We present molecular implementations of a k-bit analog to digital converter and

a k-bit digital to analog converter. We also review the molecular implementation of

basic digital logic gates. Using these gates, we demonstrate a 3-bit molecular binary

adder including two ADCs required to sample and digitize the two input operands and

a DAC to output an analog signal. A DNA implementation of the complete system is

also demonstrated in Section 4.3. It can be noted that all of the molecular reactions

are rate-independent. In other words, no matter what the speed rates of the reactions

are and how they may change during the computation, the steady-state concentrations

compute the correct desired outputs.

4.2.1 Analog to Digital Converter (ADC)

This subsection describes molecular implementation of analog to digital converter.

A 3-bit example is considered. Let the input molecular type, i, have an analog concen-

tration between 0 nM and 8 nM. The output is a 3-bit digital number x = x2x1x0. Each

bit is considered as logical ’0’ if its concentration is approximately 0 nM and logical ’1’

if its concentration is approximately 1 nM.

43

We start with the most significant bit, x2. This bit should be set to 1 when i is

larger than 4 nM and to zero when i is less than 4 nM. Reactions (4.15) implement a

one-bit comparator that determines x2. The initial concentration of T2 represents the

threshold for the comparator which is set to 4 nM.

i+ T2 −→ w2

i+ x2n −→ x2 + i

T2 + x2 −→ x2n + T2

(4.15)

In the first reaction, i and T2 molecules combine and the one with larger initial

concentration remains and the other one vanishes. The first reaction is independent of

the second and third reactions because i and T2 remain unaltered in the second and

third reactions. However, activation of the second or third reactions depends on the

outcome of the first reaction. After completion of the first reaction only one of the

second or third reactions is active. If i is larger than T2, the third reaction stops firing

while the second reaction transfers all molecules of x2n to x2. Alternately, if i is less

than T2, second reaction stops and third reaction transfers x2 to x2n completely. x2

and x2n are initialized to 0 nM and 1 nM, respectively. Note that in general for a k-bit

ADC, each bit, i.e., xj where j = 0, 1, ..., k− 1, is modeled by two molecular types, i.e.,

xj and xjn, called the bit and its complement molecular types. All of the xj species are

initialized to 0 nM and xjn species are initialized to 1 nM. Furthermore, for each j, the

total concentration of xj and xjn, is constantly 1 nM, i.e., if the concentration of xj is

C, then the concentration of xjn is (1− C), both in nM.

Table 4.1 shows the final concentrations for i, x2 and w2 after completion of Reac-

tions (4.15). i0 denotes the initial concentration of i. If i0 > T2 then i can be used

to compute the second bit of x, i.e., x1. If i0 < T2 then w2 can be used to deter-

mine x1. Reactions (4.16) and (4.17) determine x1 for the above two cases. The initial

concentrations for both threshold molecules, T1 and T ′1, are equal to 2 nM. Similar to

Reactions (4.15), the first three reactions of (4.16) implement a one-bit comparator.

However, here, the molecular concentration of i and T1 are compared to determine x1

44

when x2 is nonzero. This is equivalent to comparing initial i0 to 6 nM. Similarly the

first three reactions of (4.17) compare w2 and T ′1 to determine x1 when x2 is zero. This

is equivalent to comparing initial i0 to 2 nM.

Table 4.1: Stable concentration of molecules i, x2, and w2 after completion of Reactions
(4.15).

i w2 x2
i0 < 4 0 i0 0

i0 > 4 i0 − 4 4 1

x2 + i+ T1 −→ w1 + x2

x2 + i+ x1n −→ x1 + i+ x2

x2 + T1 + x1 −→ x1n + T1 + x2

x2n + w1 −→ i+ T1 + x2n

(4.16)

x2n + w2 + T ′1 −→ w′1 + x2n

x2n + w2 + x1n −→ x1 + w2 + x2n

x2n + T ′1 + x1 −→ x1n + T ′1 + x2n

x2 + w′1 −→ w2 + T ′1 + x2

(4.17)

Before the concentration of x2 reaches its stable value, both x2 and x2n may have

nonzero concentrations and both sets of Reactions (4.16) and (4.17) can be fired. The

fourth reactions of (4.16) and (4.17) are added to undo undesired reactions fired during

the transient time. For example, when the final concentration of x2 is zero the fourth

reaction of (4.16) transfers w1 back to i and T1 in order to undo the first reaction. The

initial concentrations for x1 and x1n are 0 nM and 1 nM, respectively. After x1 and x1n

are stabilized to their final concentrations, depending on the initial value of i, one of

them has the concentration of 1 nM and the other 0 nM.

Except i, none of the molecular types participating in Reactions (4.15) is altered by

Reactions (4.16) and (4.17). However, Reactions (4.16) and (4.17) need the final con-

centrations of x2 and x2n from Reactions (4.15). Thus, the concentrations of molecules

45

of Reactions (4.16) and (4.17) reach stable values after reactions in (4.15) are completed.

For different values of i0, Table 4.2 shows the final concentrations after Reactions (4.16)

and (4.17) are completed.

Table 4.2: Stable molecular concentrations after completion of Reactions (4.16) and
(4.17).

i w2 w1 w′1 x2 x1
i0 < 2 0 0 0 i0 0 0

2 < i0 < 4 0 i0 − 2 0 2 0 1

4 < i0 < 6 0 4 i0 − 4 0 1 0

6 < i0 i0 − 6 4 2 0 1 1

Finally, in order to determine the least significant bit (LSB) of x, i.e., x0, depending

on i0’s value, the molecular types underlined in Table 4.2 are used. For each range of

i0, the concentration of its related molecular type is compared to 1 nM to determine

x0. For example when i0 > 6, Reactions (4.18) are used to determine x0. The initial

concentration of threshold molecules T0 is 1 nM. Because both x2 and x1 are nonzero

for i0 > 6, the first three reactions compare i with 1 nM. It is equivalent to comparing i0

with 7 nM. That is to say, for i0 > 6, x0=1 nM if i0 >7 nM and x0=0 nM if i0 <7 nM.

The last two reactions of (4.18) are used to undo the undesirable combination of i and

T0 during the transient time when any of x2 or x1 is zero.

x2 + x1 + i+ T0 −→ w0 + x2 + x1

x2 + x1 + i+ x0n −→ x0 + i+ x2 + x1

x2 + x1 + T0 + x0 −→ x0n + T0 + x2 + x1

x2n + w0 −→ i+ T0 + x2n

x1n + w0 −→ i+ T0 + x1n

(4.18)

Similarly for each range of i0 five reactions are used to determine x0. Due to space

limit, these three sets of reactions, each containing five reactions, are not listed here.

The number of bits or the resolution of ADC can be increased by adding the

required comparisons and their related undo reactions. In general for k-bit ADC

46

2k+1 + 2(k − 1) molecular types are required while the number of required reactions

is
∑k

j=1 (j + 2)2j−1 = (k + 1)2k − 1. The precision (sensitivity) of ADC depends on its

acceptable input range and the number of its output bits.

Figure 4.4 shows results for the mass-action kinetic model simulation of the proposed

ADC for different values of i0 .

4.2.2 Molecular Digital Logic Circuits

In this section we demonstrate how digital designs can be implemented by molecular

reactions. We describe molecular implementations of simple logic AND/OR/XOR gates,

a binary adder, and a square-root unit. The method we use here for implementing logical

gates is similar to the method presented in [12]. However, in [12] three regulation bit

operation reactions are needed for each bit, Whereas these reactions are not required

in our complete system implementation due to the self-regulated bits output by the

proposed ADC. Here, self-regulated means for each bit only the related molecular type,

xj , or its complement, xjn, but not both, has stable non-zero concentration.

Logic Gates

We only consider two-input gates AND, OR, and XOR. Gates with more than two

inputs can be easily implemented by cascading two-input gates. Let X and Y denote

the inputs of a gate and Z the output.

AND Gate: We start with an AND gate. The output of a logical AND gate is ’1’

only if both inputs are ’1’. It means that if either X=’0’ or Y=’0’ then the output

Z should be zero. In other words, when concentration of xn or yn, i.e., complement

molecular types of inputs, is nonzero molecules of z should be transferred to zn in order

to set Z=’0’. This can be implemented by Reactions (4.19).

xn + z −→ xn + zn

yn + z −→ yn + zn.
(4.19)

47

When both x and y have stable nonzero concentrations, all molecules of zn should be

transferred to z in order to set Z=’1’. This can be implemented by Reactions (4.20).

x+ y −→ x+ y + z′

2z′ −→ ∅

z′ + zn −→ z.

(4.20)

In the first reaction of (4.20), x combines with y to generate z′, an indicator that Z

should be set to ’1’. z′ is transferred to an external sink, denoted by ∅, in the second

reaction. (This could be a waste type whose concentration we do not track.) When

molecules of both x and y are present, these reactions maintain the concentration of z′

at an equilibrium level. When either x or y is not present, z′ gets cleared out. In the

last reaction, z′ transfers zn to z.

One should note that the input concentrations don’t change in logic computations.

This enables the outputs of the ADC to be input to other logic gates if needed.

OR Gate: The output of an OR gate is ’1’ if any of its inputs is ’1’. For molec-

ular implementation it means that if either x or y has nonzero concentration then all

molecules of zn should be transferred to z. It is implemented by Reactions (4.21). In

the other case, i.e., when both inputs have zero concentrations, molecules of z should

be transferred to zn as implemented by Reactions (4.22).

x+ zn −→ x+ z

y + zn −→ y + z.
(4.21)

xn + yn −→ xn + yn + z′

2z′ −→ ∅

z′ + z −→ zn.

(4.22)

XOR Gate: The output of a two-input XOR gate is ’1’ when inputs are complements

of each other. In molecular implementation it means that when either x and yn or

xn and y have nonzero concentrations, molecules of zn should be transferred to z as

48

implemented by Reactions (4.23). For the inputs with the same logical level the output

should set to zero and molecules of z should be transferred to zn. This is implemented

by Reactions (4.24).

xn + y −→ xn + y + z′

x+ yn −→ x+ yn + z′

2z′ −→ ∅

z′ + zn −→ z.

(4.23)

xn + yn −→ xn + yn + z′n

x+ y −→ x+ y + z′n

2z′n −→ ∅

z′n + z −→ zn.

(4.24)

NAND, NOR, and XNOR gates can be implemented by exchanging z and its com-

plement in the transfer reactions, zn in the opposite directions of those of the AND,

OR, and XOR gates, respectively.

Binary Adder

By cascading AND, OR, and XOR gates we implement more complex digital systems

such as a 3-bit adder. The adder consists of one half adder (HA) for the LSB and two

full adders (FA) as shown in Figure 4.5a. Internal schematics of HA and FA are shown

in Figure 12b. A general n-bit adder can be easily implemented by extending 3-bit

adder using additional FAs for new bits.

Cascaded gates for the adder are implemented by molecular reactions presented in

Section IV.B. However, other molecular logic gates such as seesaw gates [30] can also be

used. In order to verify the functionality of the 3-bit adder we implement the structure

shown in Figure 4.6.

Two analog concentrations, x and y, are converted to two 3-bit digital data using

the proposed ADC. These two digital numbers are added using the 3-bit adder. The

output, s = s3s2s1s0, is a 4-bit digital number representing the digital sum of x and y.

49

Figure 4.7 shows the simulation results for different concentrations of inputs, x and y.

Square-root Unit

As another example of digital computing, we implement square-root of a 4-bit num-

ber. Figure 4.8 shows the schematic of its circuit. In Figure 4.8, the three-input NAND

gate can be implemented by cascading a two-input AND gate with a two-input NAND

gate. However, it is more efficient to implement three-input NAND by reactions (4.25).

In these reaction x1, x2, and x3 are inputs and y is the output.

x1n + yn −→ x1n + y

x2n + yn −→ x2n + y

x3n + yn −→ x3n + y

x1 + x2 −→ x1 + x2 + x12

x12 + x3 −→ x3 + y′

2y′ −→ ∅

y′ + y −→ yn

(4.25)

The strategy used for the direct implementation of three-input NAND in (4.25) is

similar to that of two-input NAND.

Figure 4.9 shows the simulation results for the square root circuit implemented by

molecular reactions.

4.2.3 Digital to Analog Converter (DAC)

After performing computations in digital form, in order to convert the computed

signal to its analog form, a DAC is required. Using recombinase-based logic and memory,

a DAC has been implemented in [31]. For this DAC various digital combinations of the

input inducers result in multiple levels of analog gene expression outputs on the basis

of the varying strengths of the promoters used and the sum of their respective outputs.

50

This section presents molecular implementations of a k-bit DAC with controlling the

impact of each bit on the analog output concentration. Reactions (4.26) show a 1-bit

template for implementing DAC.

xj + Vj −→ out+ xj +Mj

out+ xjn +Mj −→ xjn + Vj
(4.26)

where xj and xjn, respectively, represent the input bit and its complement molecular

type. out is the analog output of DAC with initial concentration of zero. Molecular

type Vj denotes the value of the input bit. In other words, it defines the amount of

concentration that is added to the output if input bit, xj , is nonzero. If xj is the LSB

then Vj is initialized to 1 nM and if it is the bit next to the LSB then Vj is initialized

to 2 nM and so on.

Even when the stable value of xj is zero, during the transient state xj may have

nonzero concentration. The second reaction of (4.26) prevents undesired output increase

due to the nonzero concentration of xj in transient state. Mj controls the amount of

deducted concentration from the output such that this amount is the same as the amount

added to output undesirably during the transient state. In other words, without Mj ,

the second reaction continues transferring out molecules to Vj during the steady-state.

However, this degrades the effects of other bits on the DAC’s output, since the molecular

type out is common for all bits. The initial concentration for Mj is zero.

The 1-bit template presented here can be easily extended to a k− bit DAC; for each

additional bit, one instance of Reactions (4.26) is added. Therefore, to construct a k-bit

DAC, a chemical reaction network including k copies of the 1-bit template are used with

proper initial values of Vj . As an example, Reactions (4.27) illustrate a 4-bit DAC using

the proposed template. The initial concentrations of V0, V1, V2, and V3 are 1, 2, 4, and

51

8 nM, respectively.

x0 + V0 −→ out+ x0 +M0

out+ x0n +M0 −→ x0n + V0

x1 + V1 −→ out+ x1 +M1

out+ x1n +M1 −→ x1n + V1

x2 + V2 −→ out+ x2 +M2

out+ x2n +M2 −→ x2n + V2

x3 + V3 −→ out+ x3 +M3

out+ x3n +M3 −→ x3n + V3

(4.27)

4.2.4 A complete molecular digital System

We now illustrate molecular implementation of a digital adder where concentrations

of two analog molecules x and y are converted to 3-bit digital, then added using a binary

adder, and the 4-bit output is converted to an analog value s. Two molecular ADCs, a

molecular digital adder, and a molecular DAC are used to construct a complete system

as shown in Figure 6.1. The functionality of the complete molecular system is verified.

Figure 4.11 shows the simulation results for the complete system illustrated in Fig-

ure 6.1 for different input concentrations.

4.3 DNA Implementation

This section describes mapping of the molecular reactions to DNA. We illustrate

mapping the complete digital adder of Section IV.D including ADC, adder and DAC to

DNA strand displacement reactions.

Considering each strand (single or double) of DNA as a molecule, it is possible to

implement CRNs with DNA strand-displacement mechanism. For example Figure 4.12

shows DNA strand-displacement primitive for implementing A+B
f−⇀↽−
r
C +D.

52

Toehold 1 of strand A starts binding to its complement toehold 1∗ of B. Then branch

migration happens and domain 2 of A displaces domain 2 of strand 2−3. Finally, toehold

3 and 3∗ are separated and two new strands (molecules), C and D, are produced.

A general method of mapping CRNs to DNA strand-displacement reactions has been

presented in [11] by Soloveichik, et. al. In their method based on the number of reactants

a chemical reaction is converted to a series of DNA strand-displacement reactions similar

to Figure 4.12. Similarly, for our design we generate the corresponding DNA reactions

and simulate the system using the kinetic differential equations to characterize the

behavior of the system.

The initial concentrations of auxiliary complexes is set to Cmax = 10−5M, and the

maximum strand displacement rate constant is qmax = 106 M−1 s−1. For all of the

reactions the rate constant is considered as 105M−1S−1. Figure 4.13 shows the ODE

simulation results for the DNA implementation of the complete system illustrated in

Figure 6.1 for different inputs.

4.4 Discussion and Concluding Remarks

This chapter presented methodologies for implementing continuous-time and digital

processing with molecular reactions. Several examples are presented to illustrate the

approaches presented in the chapter.

Although pertaining to biology, the contributions of this chapter are neither exper-

imental nor empirical; rather they are constructive and conceptual. We design robust

digital logic with molecular reactions. For the molecular digital systems, our designs do

not depend on specific reaction rates; the computation is accurate for a wide range of

rates. This is crucial for mapping the design to DNA substrates.

Intense efforts by the synthetic biology community have been devoted to the imple-

mentation of computation and logical functions with genetic regulatory elements [32]-

[36]. For example design of robust logical circuits using chemically wired cells have

53

been presented in [29] for single logic gates. Also genetic circuits consisting of multi-

layer logical gates have been implemented in single cell in [37]. Yet, progress seems

to have stalled at the complexity level of circuits with perhaps 7-15 components. In

fact, in vivo engineering of such circuits is full of experimental difficulties. In contrast,

in vitro molecular computation with DNA strand displacement is following a Moore’s

Law-like trajectory in the scaling of its complexity. Thus, due to their complexity, sys-

tems presented in this chapter are more likely to be physically realizable in vitro than

in vivo.

The impetus of the field is not computation per se; chemical systems will never be

useful for number crunching. Rather the field aims for the design of custom, embedded

biological “sensors” and “controllers” – viruses and bacteria that are engineered to

perform useful tasks in situ, such as cancer detection and drug therapy. Exciting work

in this vein includes [38, 39, 40, 41].

One should notice that there is quantization error in the ADC component. This

is similar to the quantization error for other types of ADC usually used in digital

signal processing systems [42]. The error can decrease the accuracy of system. The

quantization error can be reduced by increasing the ADC resolution and, consequently,

increasing the number of bits of ADC and DAC components.

54

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

𝑥2
𝑥1
𝑥0

𝑖0=1.8

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

𝑖0=2.5

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

𝑖0=3.1

0 100 200 300 400 500

0.2

0.4

0.6

0.8

𝑖0=4.2

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

𝑖0=5.7

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

𝑖0=6.6

Time (minutes)

C
o

n
ce

n
tr

at
io

n
 (

n
M

)

Figure 4.4: Simulation results of 3-bit molecular ADC for different input concentrations.

55

A0

Ai

C1

S0

Si

Ci+1

Bi

B0

Ci

FA

HA

FA FA HA

S0S1S2S3

A0B0A1B1A2B2

C1C2

(a)

(b)

Figure 4.5: Schematic of the 3-bit adder; (a) Block diagram, (b) Internal circuits for
HA and FA blocks.

ADC
3-bit
ADDER

ADC

x

y

s0

s2

s1

s3

s0

s2

s1

x0

x2

x1

y0

y2

y1

Figure 4.6: Block diagram of the system for verifying molecular 3-bit adder.

56

0 200 400 600 800

0.2

0.4

0.6

0.8

𝑥 = 2.1
 y = 3.4

0 200 400 600 800

0.2

0.4

0.6

0.8

𝑥 = 5.3
 y = 2.1

0 200 400 600 800

0.2

0.4

0.6

0.8

1.0

𝑥 = 1.2
 y = 1.2

0 200 400 600 800

0.2

0.4

0.6

0.8

1.0

𝑥 = 4.5
 y = 5.3

0 200 400 600 800

0.2

0.4

0.6

0.8

1.0

𝑥 = 5.5
 y = 6.1

0 200 400 600 800

0.2

0.4

0.6

0.8

1.0

𝑥 = 2.2

 y = 0.1

Time (minutes)

C
o

n
ce

n
tr

at
io

n
 (

n
M

)

𝑠0

𝑠1

𝑠2
𝑠3

Figure 4.7: Simulation results of the molecular implementation of the system shown in
Figure 4.6.

57

x0

x1

x2

x3

y0

y1

Figure 4.8: Schematic for 4-bit Square-root unit.

0 100 200 300 400 500 600

0.2

0.4

0.6

0.8

0 100 200 300 400 500 600

0.2

0.4

0.6

0.8

1.0

Time (minutes)

C
o

n
ce

n
tr

at
io

n
 (

n
M

)

0 100 200 300 400 500 600

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.2

0.4

0.6

0.8

1.0

𝑥3𝑥2𝑥1𝑥0 = 0001

𝑦0

𝑦1

𝑥3𝑥2𝑥1𝑥0 = 0000

𝑥3𝑥2𝑥1𝑥0 = 1001 𝑥3𝑥2𝑥1𝑥0 = 0100

Figure 4.9: Kinetics simulations that compute the Square-root of 0, 1, 4, and 9 using
the molecular implementation of unit shown in Figure 4.8.

58

ADC
3-bit
ADDER

ADC

x

y

S

x0

x2

x1

y0

y2

y1

DAC

Figure 4.10: Block diagram of a simple prototype developed and verified in this research.

59

Time (minutes)

C
o

n
ce

n
tr

at
io

n
 (

n
M

)

0 500 1000 1500 2000 2500 3000

2

4

6

8

10

0 500 1000 1500 2000 2500 3000

2

4

6

8

0 500 1000 1500 2000 2500 3000

1

2

3

4

5

6

7

0 200 400 600 800 1000

1

2

3

4

0 50 100 150 200

0.5

1.0

1.5

2.0

0 200 400 600 800 1000

0.5

1.0

1.5

2.0

𝑥 = 2.2

 y = 0.1
𝑥 = 1.2
 y = 1.2

𝑥 = 5.3
 y = 2.1

𝑥 = 2.1
 y = 3.4

𝑥 = 4.5
 y = 5.3

𝑥 = 5.5
 y = 6.1

Figure 4.11: Simulation results for the system shown in Figure 6.1.

1 2

32

2* 3*1*

32

2* 3*1*

1

2

32

2* 3*1*

1
2

1

2 3

2

2* 3*1*

A

B

C

D

Figure 4.12: Implementation of A+B
f−⇀↽−
r
C+D using DNA strand-displacement mech-

anism.

60

0 1000 2000 3000 4000 5000 6000

2

4

6

8

10

Time (minutes)
0 1000 2000 3000 4000 5000 6000

2

4

6

8

0 1000 2000 3000 4000 5000 6000

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400

1

2

3

4

0 50 100 150 200

0.5

1.0

1.5

2.0

0 200 400 600 800 1000 1200 1400

0.5

1.0

1.5

2.0

C
o

n
ce

n
tr

at
io

n
 (

n
M

)

𝑥 = 1.2
 y = 1.2

𝑥 = 2.2

 y = 0.1

𝑥 = 2.1
 y = 3.4

𝑥 = 4.5
 y = 5.3

𝑥 = 5.5
 y = 6.1

𝑥 = 5.3
 y = 2.1

Figure 4.13: Simulation results for the DNA implementation of the system shown in
Figure 6.1.

Chapter 5

Markov Chain Computations

using Molecular Reactions

5.1 Introduction

The Markov chain has been frequently used for modeling and analyzing systems of

chemical reactions [43],[44],[8]. However, this chapter addresses the reverse problem,

i.e., modeling the Markov chain and computing its steady-state probabilities by a sys-

tem of chemical reactions. Since Markov processes are commonly used in numerous

processing and statistical modeling applications, a systematic method for synthesizing

Markov chains with DNA strand displacement reactions leads to a systematic method

for implementing these applications using DNA.

This research, for the first time, presents a systematic method of implementing first-

order Markov chain processes using molecular reactions. Each state in the Markov chain

is modeled by a unique data molecular type and each state transition is modeled by a

molecular reaction and a unique control molecule. Data molecule for each state or con-

trol molecule for each state transition is distinguishable from molecules corresponding to

other states or state transitions. All the reactions have the form of Cij + Di →Cij +Dj ,

61

62

where Cij is the control molecule that facilitates transition from state i to j, and Di and

Dj are data molecules for states i and j, respectively. The final concentration of data

molecules related to each state determines the probability of that state. Since all of the

reactions are bimolecular, the model can be mapped to a set of toehold-mediated DNA

strand displacement reactions according to the second approach described in Chapter

2.

5.2 Modeling by Molecular reactions

This section describes the methodology of constructing a model for Markov chain

process using molecular reactions. This model can be used to compute the steady-state

probability of each state in the Markov chain diagram. The methodology has two parts:

initialization and transition reactions.

Initialization: This stage consists of initializing two groups of molecules: data

molecules and control molecules.

Data molecule for each state of Markov chain is a unique type of molecule assigned

to that state. The initial quantity for each data molecule, except the start state, is zero.

For the start state the initial value can be any large nonzero number; however, larger

the initial value, more accurate the probability estimates are.

Control molecules are used to control transformation of data molecules of one state

to data molecules of other states according to the transition probabilities in the Markov

chain diagram. A unique type of molecule is devoted for each state transition in the

chain. The quantities of control molecules are time invariant and can be determined

according to the probabilities related to their corresponding transition in the chain; the

ratio of quantity of a control molecule over total quantities of all control molecules in a

state equals the probability of corresponding transition.

In general, the number of unique molecular types in our model is the sum of the

number of states and the number of transitions in the Markov chain.

63

Transition Reactions: The transition reactions determine how data molecules trans-

fer in order to implement the desired Markov chain. There is a transition reaction for

each transition in the chain. This reaction transfers data molecules in the source state of

transition to the data molecules in the destination state. Each transition reaction uses

a control molecule for transferring data molecules. However, transition reactions should

not change the concentration of control molecules. Therefore, if a control molecule is

used as a reactant in a reaction, it should be also be a product of the reaction.

To illustrate our methodology we explain the molecular model for gambler problem

as an instance of Markov chain[23]; a gambler starts with i dollars and plays game of

chance in each step, either increasing his money by $1 or decreasing by $1. He stops

when money is gone, RUIN, or when he has N dollars, WIN. Assuming the chances of

winning, w, and loosing, l, for all states to be identical, what’s the probability of ruin?

Figure 5.1 shows a 4-state (N=3) gambler problem with w = 0.3 and l = 0.7.

Theoretical ruin and win probabilities for this example are 0.886076 and 0.113924,

respectively [23].

RUIN A B WIN

0.3

0.7 0.7

0.3$0 $1 $2 $3

Figure 5.1: State diagram for the gambler problem with N=3.

In order to design its molecular reactions, first we devote a data molecular type to

each state: Molecule RUIN for ruin state, A and B for intermediate states, and WIN

for win state. Suppose we want to compute P1, i.e., the probability of ruin if gambler

starts the game at state A with $1. Therefore, the initial value of data molecule A is

nonzero, while the other states have data molecules with zero initial values. We consider

100 as the initial value of A.

64

Control molecules A1 and A2 are assigned to the output transitions of state A.

Similarly, B1 and B2 are assigned to the transitions from state B. Because w=0.3 and

l=0.7 for this example, we choose initial values as [A1] = [B1] = 30 and [A2] = [B2] =

70. One should notice that despite the exact concentrations for the control molecules,

they need to conform to (5.1).

w =
[A1]

[A1] + [A2]
=

[B1]

[B1] + [B2]

l =
[A2]

[A1] + [A2]
=

[B2]

[B1] + [B2]
(5.1)

The final step is to write the molecular reactions related to each state transition.

Reactions (5.2) and (5.3) represent output transitions for states A and B, respectively.

These reactions with the initial concentrations for each molecular type are the proposed

molecular model for the gambler problem in Figure 5.1.

R1 : A+A1→B +A1

R2 : A+A2→RUIN +A2 (5.2)

R3 : B +B1→WIN +B1

R4 : B +B2→A+B2 (5.3)

Thus, the gambler problem with N=3 can be modeled by eight types of molecules

and four molecular reactions. Here the transition probabilities for states A and B are

similar and control molecules A1 and A2 can be used for both states and B1 and B2

can be omitted.

65

5.3 Analysis of the Proposed Molecular Model

According to both stochastic chemical kinetics [20],[21] and mass-action kinetics [22],

in this section the proposed molecular model is analyzed. We analyze the molecular

model for the 4-state gambler problem shown in Figure fig:markov1.

5.3.1 Stochastic Model

If we only consider state A, there are two ways for data molecules A to transfer from

this state; they can participate either in reaction R1, or R2. Based on the stochastic

kinetics the probabilities of participating in reactions R1 and R2 can be computed as

(5.4) and (5.5), respectively. We use lowercase letter to represent quantities for related

molecular types; e.g., a1 and a2 stand for quantities of A1 and A2 respectively. Since

the quantities of A1 and A2 are time invariant, the probabilities remain constant.

P (R1) =

 a1

1


 a

1


 a1

1


 a

1

+

 a2

1


 a

1


= a1

a1+a2

(5.4)

P (R2) =

 a2

1


 a

1


 a1

1


 a

1

+

 a2

1


 a

1


= a2

a1+a2

(5.5)

66

If all the states are considered, all of the four reactions can be fired and their prob-

abilities are computed as (5.6).

P (R1) =

(
a1
1

)(
a
1

)(
a1
1

)(
a
1

)
+
(
a2
1

)(
a
1

)
+
(
b1
1

)(
b
1

)
+
(
b2
1

)(
b
1

) =
a1.a

a(a1 + a2) + b(b1 + b1)

P (R2) =

(
a2
1

)(
a
1

)(
a1
1

)(
a
1

)
+
(
a2
1

)(
a
1

)
+
(
b1
1

)(
b
1

)
+
(
b2
1

)(
b
1

) =
a2.a

a(a1 + a2) + b(b1 + b1)

P (R3) =

(
b1
1

)(
b
1

)(
a1
1

)(
a
1

)
+
(
a2
1

)(
a
1

)
+
(
b1
1

)(
b
1

)
+
(
b2
1

)(
b
1

) =
b1.b

a(a1 + a2) + b(b1 + b1)

P (R4) =

(
b2
1

)(
b
1

)(
a1
1

)(
a
1

)
+
(
a2
1

)(
a
1

)
+
(
b1
1

)(
b
1

)
+
(
b2
1

)(
b
1

) =
b2.b

a(a1 + a2) + b(b1 + b1)
. (5.6)

For the four probabilities in (5.6) we assume that at each step at least one reac-

tion can be fired. In other words, a (a1 + a2) + b (b1 + b2) 6= 0. The quantities of

molecules RUIN , A, B, and WIN denote the elements for the states of the system, S =

(ruin, a, b, win). Depending on which reaction is fired, S changes after each step.

(0,100,0,0)

(0,99,1,0)

(1,99,0,0)

(0,98,2,0)

(1,98,1,0)

(0,99,0,1)

(0,100,0,0)

(1,98,1,0)

(2,98,0,0)

S0=

P(R1)

P(R2)

P(R1)

P(R1)

P(R4)

P(R3)

P(R2)

P(R2)

Figure 5.2: First two steps of updating the state of molecular model for Figure 5.1.

Figure 5.2 shows the graph for the first two steps of the example in Figure 5.1. One

should keep in mind that the total number of data molecules in each state is constant.

As another interpretation for the model we consider each molecule in the system.

The molecule transforms to a molecule either in left state or right state with the prob-

abilities of 0.3 or 0.7, respectively. Therefore, we can interpret each single molecule in

the system as an instance of the gambler’s play.

The Monte Carlo simulation is used for validating the model. The goal is to compute

the ruin probability if gambler arrives to play with $1. Therefore, the simulation starts

67

with the initial state S = (0, 100, 0, 0) and stops whenever no more reaction can be

fired. The simulation is repeated 106 times. Figure 5.3 shows the simulation results.

The horizontal axis represents the number of molecules and the blue (red) line represents

the number of times the simulation ends up with those numbers of molecules in ruin

(win) state. Ruin probability can be calculated as formulated in (5.7). The mean values

of the ruin and win distributions in Figure 5.3 are used as the number of molecules. If we

simulate with a larger initial value of data molecule, the probabilities can be computed

more accurately. Table 5.1 shows the probabilities obtained using different initial values

for data molecule A. Note that the accuracy improves with increase in the initial value

of A.

P1 =
number of data molecules in ruin state

total number of data molecules in ruin and win states
(5.7)

Table 5.1: Simulation vs theoretical computation of ruin probability for example in
Figure 5.1

Initial value for A Computed ruin probability Error

100 0.89 0.003

1000 0.887 0.0009

10000 0.8862 0.0001

5.3.2 Mass-action Kinetics

Based on the mass-action law, time variation of data molecules can be represented

by the ODEs (5.8).

d[A]

dt
= −k. [A1] [A]− k. [A2] [A] + k. [B2] [B]

d [B]

dt
= −k. [B1] [B]− k. [B2] [B] + k. [A1] [A]

d[S]

dt
= k. [A2] [A] (5.8)

68

Figure 5.3: Stochastic simulation results for molecular model of Figure 5.1.

d[E]

dt
= k. [B1] [B]

Solving these ODEs using the initial values of molecules, we can obtain the time

variation for each molecule. The final concentration of data molecule related to each

state can be used to determine the probability of that state.

We used MATLAB to solve the ODEs and plot them as shown in Figure 5.4(a).

The final concentration for ruin and win molecules are 88.61 (nM) and 11.39 (nM),

respectively. Figure 5.4(b) illustrates the ratio [RUIN] /([RUIN] + [WIN]) which is

the ruin probability and perfectly matches with the theoretical value.

5.4 DNA implementation

To implement the proposed model with a real molecular system we used DNA strand

displacement reactions. By properly designing the toeholds in DNA molecules, an arbi-

trary rate of binding can be achieved. Our model consists of bimolecular reactions and

it can be implemented by DNA strand displacements using both approaches presented

in Section 2.3 of Chapter 2 . We choose the approach 1. For this purpose each molecule

needs to be identified by two toeholds and two domains as depicted in Figure 5.5 for

69

(a)

(b)

Figure 5.4: a) ODE simulation for molecular model of Markov chain in Figure 5.1, b)
The computed [RUIN]/([RUIN]+[WIN]) ratio.

70

molecule A. In this representation continuous and dotted lines are used for domain and

toehold parts, respectively.

D1A t1A D2A t2A

Figure 5.5: DNA representation of molecule A.

To evaluate the DNA implementation of the proposed model, we implement the

model for the example shown in Figure 5.1. All the molecules are mapped to the DNA

strands as described above. We use the Mathematica tool of Soloveichik et al [11] to

simulate the designed DNA system. The similar initial parameters as [11] are used for

simulation. Figure 5.6 illustrates the dynamic concentrations of each data molecular

type. The simulation results match with the simulation results of ODE model as shown

in Figure fig:markov4(a). The ruin probability is computed as the ratio of the final

concentration of RUIN molecule over the summation of the final concentrations of

RUIN and WIN molecules.

We next use our DNA construction for a more complex instance of a gambler problem

with N=9 and similar transition probabilities. We compute ruin probabilities when the

gambler starts with $5 and $8. For the first case, we initialize the data molecule of

the 5th state, E, to 100nM and the other data molecules to zero. While for the second

case, we initialize the data molecule of the 8th state, H, to 100nM and the other

data molecules to zero. Figure 5.7 demonstrates the simulation results. Note that as

tabulated in Table 5.2, the ruin probabilities computed using the final concentrations

shown in Figure 5.7 match with the theoretical probabilities.

71

Figure 5.6: Simulation results of DNA implementation for the proposed molecular
model for Figure 5.1.

Table 5.2: Simulation vs theoretical computation of ruin probabilities for A 9-state
gambler Ruin Problem
Start state [ruin]/([ruin]+[win]) Theoretical probability of ruin

$5 0.962 0.9667

$8 0.569 0.5717

72

(b)

(a)

Figure 5.7: Simulation results of the DNA implementation for the gambler problem
with N=9 and starting with a) $5, b) $8.

73

5.5 Discussion

Molecular systems have been used for modeling different applications. This chapter

demonstrates a method for modeling the stochastic behavior of Markov chain processes

using molecular reactions. Both stochastic and ODE simulation results validate our

model. Although we describe the modeling of a gambler ruin problem; i.e., a first-

order Markov chain with identical transition probabilities in each state, the method

can be used for modeling any Markov chain process. A first-order Markov process

with different transition probabilities for each state can be easily modeled by adjusting

the initial quantities for control molecules of each state. Future work will be directed

towards modeling of higher order Markov processes and generalizing the method for

different types of random processes.

Chapter 6

CRNs for Computing

Polynomials Using Fractional

Coding

6.1 Fractional Coding

It has long been recognized that, viewed from a mathematical standpoint, a set

of chemical reactions can exhibit rich dynamical behavior [45]. On the computational

front, there has been a wealth of research into efficient methods for simulating chem-

ical reactions, ranging from ordinary differential equations (ODEs) [46] to stochastic

simulation [47]. On the mathematical front, entirely new branches of theory have been

developed to characterize chemical dynamics [48]. As opposed to writing computer

programs to analyze chemical systems, in the nascent field of molecular computing, the

goal is computation directly with chemical reactions. In this context, a CRN transforms

input concentrations of molecular types into output concentrations and so performs com-

putation.

74

75

The question of the computational power of chemical reactions has been consid-

ered by several authors. Magnasco demonstrated that chemical reactions can compute

anything that digital circuits can compute [49]. Soloveichik et al. demonstrated that

chemical reactions are Turing Universal, meaning that they can compute anything that

a computer algorithm can compute [43]. This work was applicable to a discrete, stochas-

tic model of chemical kinetics. The computation is probabilistic; the total probability

of error of the computation can be made arbitrarily small (but not zero).

Either explicitly or implicitly, prior work has considered two types of encodings for

the input and output variables of CRNs [50, 51]:

1. The value of each variable corresponds to the concentration of a specific molecular

type; we will call this the direct representation.

2. The value of each variable is represented by the difference between the concentra-

tions of a pair of molecular types; we will call this the dual-rail representation [51].

In this chapter we introduce a new representation that we call the fractional rep-

resentation. A pair of molecular types is assigned to each variable, e.g., (X0, X1) for a

variable x. The value of the variable is determined by the following ratio:

x =
[X1]

[X0] + [X1]
. (6.1)

Evidently, the value is confined to the unit interval, [0, 1]. The proposed encoding

method is inspired by prior work in designing stochastic circuits [52, 53, 54, 55]. Such

circuits operate on randomized bit streams, with the values of variables represented as

the fraction of 1’s versus 0’s in the streams. In a sense, the main contribution of this

chapter is the application of this theory from stochastic circuit design to CRNs.

6.2 CRNs for Computing Polynomials

Based on the fractional representation in Eq. 6.1, we propose a CRN framework

for computing univariate polynomials that map the unit interval [0,1] to itself. We

76

demonstrate that a CRN exists that computes any such polynomial. The full system

consists of an encoder, the computation CRNs and a decoder, as shown in Fig. 6.1.

The encoder converts the input molecular type, X (for 0 ≤ [X] ≤ 1), into two molecular

EncoderX Computation
CRNs

X0

X1
Decoder Y

Y0

Y1

Figure 6.1: Whole system performing computation in fractional representation.

types, X0 and X1, such that

[X] =
[X1]

[X0] + [X1]
.

The decoder converts the ratio of two molecular types, Y0 and Y1, into a single molecular

type, Y , as the final output such that

[Y] =
[Y1]

[Y0] + [Y1]
.

We describe the design of the Encoder and Decoder in Section 6.2.4, “Encoding and

Decoding”.

We first illustrate the Computation CRN block with a simple example. Consider

the following CRN:

77

X0 +X0 → S0 +X0 +X0

X0 +X1 → 2S1 +X0 +X1

X1 +X1 → S2 +X1 +X1

(a)

S0 +B0,0 → Y0 +B0,0

S0 +B0,1 → Y1 +B0,1

S1 +B1,0 → Y0 +B1,0

S1 +B1,1 → Y1 +B1,1

S2 +B2,0 → Y0 +B2,0

S2 +B2,1 → Y1 +B2,1

Y0 → ∅

Y1 → ∅

(b)

Set the initial concentrations as follows:

[B0,0] = 0.25 nM

[B0,1] = 0.75 nM
} ⇒ b0 =

[B0,1]

[B0,0] + [B0,1]
=

0.75

0.25 + 0.75
=

3

4

[B1,0] = 0.75 nM

[B1,1] = 0.25 nM
} ⇒ b1 =

[B1,1]

[B1,0] + [B1,1]
=

0.25

0.75 + 0.25
=

1

4

[B2,0] = 0.50 nM

[B2,1] = 0.50 nM
} ⇒ b2 =

[B2,1]

[B2,0] + [B2,1]
=

0.50

0.50 + 0.50
=

1

2

Although not obvious, it may be shown that this CRN computes the function

y(x) =
3

4
x2 − x+

3

4
, (6.2)

where 0 ≤ x ≤ 1.

Note that any unit could have been used in this chapter for the molecular concen-

trations. nM has been used due to the practical utility.

78

The CRN is composed of two sets of reactions: the three reactions in group (a)

are referred as control generating reactions and the six reactions in group (b) represent

the transferring reactions. The control generating reactions generate the molecules that

control the transferring reactions (similar to the way that the control bits select outputs

from inputs with multiplexors in electronic circuits). However, the control molecules

represent analog values and transfer inputs to outputs proportionally. We note that the

transferring reactions are conceptually similar to the molecular reactions proposed in

Chapter 5 for implementing Markov Chains [56].

We provide details regarding the synthesis method in Section “Synthesizing CRNs

for Computing Polynomials” 6.2.2. Here we simply note that, given a polynomial y(x),

the first step is to convert it to its Bernstein polynomial equivalent, g(x). For the

polynomial y(x) in Equation (6.2),

g(x) =
3

4
[(1− x)2] +

1

4
[2x(1− x)] +

1

2
x2. (6.3)

(A discussion of the math behind this is given in Section “Proof Based on the Mass-

Action Kinetics” 6.2.3.)

Note that the coefficients of the Bernstein polynomial correspond to the values of

bi for i=0,1,2. These values are used to initialize the molecular types Bi,0 and Bi,1 for

i = 0, 1, 2. In fact, computing with chemical reaction networks consists of two parts.

First, choose a CRN as a means of building the dynamical system. Second, simulate

a purposefully chosen dynamical system to equilibrium. By introducing the Bi,0 and

Bi,1 species, the concentrations of which are time-invariant and fixed to what would

have been rate constants, we propose changes to the first part that result in the same

dynamical system simulated in the second part.

Suppose we want to evaluate y(x) at x=0.5. We would initialize X0 = X1=0.5 nM

such that

x =
[X1]

[X0] + [X1]
= 0.5. (6.4)

79

We would set the initial concentration of the other types to zero. The control gener-

ating reactions use X0 and X1 to produce the control molecules, S0, S1, and S2 and

transferring reactions use control molecules to compute the output. The output value,

y(x), is computed as the ratio of the final concentrations of Y0 and Y1, i.e.,

y(x) =
[Y1]

[Y0] + [Y1]
. (6.5)

The simulation results for evaluating this example at x=0.5 using a continuous mass-

action kinetics model are shown in Fig. 6.2. As the time t→∞, the ratio

[Y1(t)]

[Y0(t)] + [Y1(t)]
(6.6)

approaches the correct value of y(0.5)=0.4375.

 0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

Y0

Y1

Time (hr)

C
o
n
ce

n
tr

at
io

n
 (

n
M

)

Figure 6.2: Simulation results for the CRN implementing the polynomial y(x) = 3
4x

2 −
x + 3

4 at x = 0.5. These were obtained from an ODE simulation of the mass-action
kinetics.

6.2.1 Representation by Bernstein Polynomials

In our method, the Bernstein representation of a polynomial is a key element.

We briefly describe the relevant mathematics. The family of n + 1 polynomials of the

80

form

Bi,n(x) =

(
n

i

)
xi(1− x)n−i, i = 0, . . . , n (6.7)

are called Bernstein basis polynomials of degree n. A linear combination of Bernstein

basis polynomials of degree n,

g(x) =

n∑
i=0

bi,nBi,n(x), (6.8)

is a Bernstein polynomial of degree n. The bi,n’s are called Bernstein coefficients.

Polynomials are usually represented in power form, i.e.,

y(x) =

n∑
i=0

ai,nx
i. (6.9)

We can convert such a power-form polynomial of degree n into a Bernstein polynomial

of degree n. The conversion from the power-form coefficients, ai,n, to the Bernstein

coefficients, bi,n, is a closed-form expression:

bi,n =

i∑
j=0

(
i
j

)(
n
j

)aj,n, 0 ≤ i ≤ n. (6.10)

For a proof of this, the reader is referred to [57].

Generally speaking, a power-form polynomial of degree n can be converted into an

equivalent Bernstein polynomial of degree greater than or equal to n. The coefficients

of a Bernstein polynomial of degree m+ 1 (m ≥ n) can be derived from the Bernstein

coefficients of an equivalent Bernstein polynomial of degree m as

bi,m+1 =


b0,m i = 0

(1− i
m+1)bi,m + i

m+1bi−1,m 1 ≤ i ≤ m

bm,m i = m+ 1.

(6.11)

Again, for a proof the reader is referred to [57].

By encoding the values of variables as the ratio of the concentrations of two molecular

types,

x =
[X1]

[X0] + [X1]
,

81

we can only represent numbers between 0 and 1. Accordingly, our method synthesizes

functions that map the unit interval [0,1] onto itself. The method can also synthesize

functions that map the unit interval to the negative unit interval [-1,0]. This computes

the negative of a function that maps the unit interval to itself. As was shown in Example

1, the coefficients of the polynomials that we compute are also represented in this

fractional form. Fortunately, it has been shown that polynomials that maps the unit

interval [0,1] onto the interval (0,1) can be converted into a Bernstein polynomial with all

coefficients in the unit interval [58]. Note, that the value of polynomial should not reach

0 or 1 in the unit interval, otherwise, it can’t be converted into a Bernstein polynomial;

however, it can be approximated by a Bernstein polynomial.

6.2.2 Synthesizing CRNs for Computing Polynomials

In this section we present a systematic methodology for synthesizing CRNs that can

compute polynomials. As discussed in the previous section, we assume that the target

polynomial is given in Bernstein form, with all coefficients in the unit interval. The

method is composed of two parts, designing the CRN and initializing certain types to

specific values, as discussed in the following section.

Designing the CRN

The CRN reactions consist of two sets of reactions that we call the control generating

reactions and the transferring reactions.

First consider the control generating reactions. When our proposed CRN is comput-

ing a polynomial of degree m, each control generating reaction should have m reactants.

The reactions consist of all possible combinations of m molecules chosen from X0 and

X1. These (m + 1) reactions are listed in (6.12). In the first reaction of (6.12), all

reactants are chosen from molecules of X0 and produce molecules of S0. In the second,

(m− 1) molecules of X0 and one molecule of X1 are combined to produce molecules of

82

S1. Similarly, the (i+ 1)st reaction contains i molecules of X1 and (m− i) molecule of

X0. The total number of possible reactions, as shown in (6.12), is (m+ 1).

mX0 → S0 +mX0

X1 + (m− 1)X0 → mS1 +X1 + (m− 1)X0

2X1 + (m− 2)X0 →
(
m

2

)
S2 + 2X1 + (m− 2)X0

...

iX1 + (m− i)X0 →
(
m

i

)
Si +X0,1 + iX1 + (m− i)X0

...

mX1 → Sm +mX1. (6.12)

A degree m Bernstein polynomial has (m + 1) Bernstein coefficients. We consider

(m + 1) pairs of types (Bj,0, Bj,1) for j = 0, 1, . . . ,m, to represent these coefficients.

The transferring reactions produce the final output, Y0 or Y1, from the products of

the control generating reactions, the Sj ’s. They do so proportionally to the Bernstein

coefficients. Sj goes to Y0 if it combines with Bj,0 and goes to Y1 if it combines with

83

Bj,1. Accordingly, there are 2(m+ 1) transferring reactions as listed in Equation (6.13).

S0 +B0,0 → Y0 +B0,0

S0 +B0,1 → Y1 +B0,1

S1 +B1,0 → Y0 +B1,0

S1 +B1,1 → Y1 +B1,1

...

Sm +Bm,0 → Y0 +Bm,0

Sm +Bm,1 → Y1 +Bm,1

Y0 → ∅

Y1 → ∅. (6.13)

The number of required reactions for the implementation of a Bernstein polynomial

of degree m is equal to 3m+5. We also need 3m+7 molecular types listed in Table 6.1.

Table 6.1: The number of required molecular types in the proposed CRN for a polyno-
mial of degree m.

Represented molecular type Number of molecular types

X0, X1 2
Sj m+ 1

Bi,0, Bi,1 2m+ 2
Y0, Y1 2

Total 3m+ 7

Initialization

We initialize the pair (Bj,0, Bj,1) according to the Bernstein coefficients bj,m, i.e., we

have

bj,m =
[Bj,1]

[Bj,0] + [Bj,1]
. (6.14)

84

For simplicity we initialize Bj,0 and Bj,1 such that the sum [Bj,0]+ [Bj,1] is the same

arbitrary value for all j’s. Call the sum [Bj,0] + [Bj,1] = B for all j’s. In fact, first we

calculate the values of Bernstein coefficients using (6.10) and then initialize Bj,1 and

Bj,0 as [Bj,1] = B × bj,m and [Bj,0] = B − [Bj,1]. (For the example in the introduction,

we considered B = 1 nM .)

We initialize the corresponding molecular type in the input pair (X0, X1) based on

the value xin at which the polynomial is to be evaluated, i.e.,

xin =
[X1]

[X0] + [X1]
. (6.15)

All the other intermediate types, i.e., the Sj ’s as well as the output types Y0 and Y1,

are initialized to zero.

6.2.3 Proof Based on the Mass-Action Kinetics

We use an ordinary differential model of the mass-action kinetics to prove the cor-

rectness of our proposed CRN design.

The control generating reactions (6.12) produce types Sj while the transferring re-

actions (6.13) consume them. Therefore the ODEs for the types Sj are:

d[S0]

dt
= [X0]

m − [B0,0][S0]− [B0,1][S0] = [X0]
m − [S0]([B0,0] + [B0,1])

d[S1]

dt
= m[X0]

m−1[X1]− [B1,0][S1]− [B1,1][S1] = m[X0]
m−1[X1]− [S1]([B1,0] + [B1,1])

...

d[Sk]

dt
=

(
m

k

)
[X0]

m−k[X1]
k − [Bk,0][Sk]− [Bk,1][Sk] =

(
m

k

)
[X0]

m−k[X1]
k − [Sk]([Bk,0] + [Bk,1])

...

d[Sm]

dt
= [X1]

m − [Bm,0][Sm]− [Bm,1][Sm] = [X1]
m − [Sm]([Bm,0] + [Bm,1]).

At equilibrium
d[Sj]
dt =0 for all j’s. Accordingly, we can compute the Sj ’s as:

[Sj] =

(
m
j

)
[X0]

m−j [X1]
j

[Bj,0] + [Bj,1]
0 ≤ j ≤ m. (6.16)

85

Now we write the ODEs for the output types Y0 and Y1. Based on the transferring

reactions (6.13), we have:

d[Y0]

dt
= [B0,0][S0] + [B1,0][S1] + · · ·+ [Bm,0][Sm]− [Y0]

d[Y1]

dt
= [B0,1][S0] + [B1,1][S1] + · · ·+ [Bm,1][Sm]− [Y1] (6.17)

At equilibrium d[Y0]
dt = d[Y1]

dt = 0 and

[Y0] = [B0,0][S0] + [B1,0][S1] + · · ·+ [Bm,0][Sm]

[Y1] = [B0,1][S0] + [B1,1][S1] + · · ·+ [Bm,1][Sm]. (6.18)

According to the fractional encoding, the output value, y, is calculated as follows.

y = [Y1]
[Y0]+[Y1]

= (6.19)

[B0,1][S0]+[B1,1][S1]+...+[Bm,1][Sm]
([B0,0][S0]+[B1,0][S1]+...+[Bm,0][Sm])+([B0,1][S0]+[B1,1][S1]+···+[Bm,1][Sm]) .

With the assumption that ([Bj,0] + [Bj,1]) = B for all j’s, we have:

y =
[B0,1][S0] + [B1,1][S1] + · · ·+ [Bm,1][Sm]

([B0,0] + [B0,1])[S0] + ([B1,0] + [B1,1])[S1] + · · ·+ ([Bm,0] + [Bm,1])[Sm]

=
[B0,1][S0] + [B1,1][S1] + · · ·+ [Bm,1][Sm]

B([S0] + [S1] + · · ·+ [Sm])

=

∑m
j=0 [Bj,1][Sj]

B(
∑m

j=0 [Sj])
. (6.20)

By substituting [Si] from Eq. (6.16)

y =

∑m
j=0 [Bj,1]

(mj)[X0]m−j [X1]j

B

B(
∑m

j=0

(mj)[X0]m−j [X1]j

B)

(6.21)

86

We know that
∑m

j=0

(
m
j

)
[X0]

m−j [X1]
j = ([X0]+[X1])

m, due to binomial theorem; there-

fore, the denominator can be replaced by ([X0] + [X1])
m.

y =

∑m
j=0 [Bj,1]

(mj)[X0]m−j [X1]j

B

([X0] + [X1])m

=

m∑
j=0

[Bj,1]

B

(
m

j

)
[X0]

m−j [X1]
j

([X0] + [X1])m

=

m∑
j=0

bj,m

(
m

j

)
(1− x)m−jxj (6.22)

Equation (6.22) is exactly the expression for a Bernstein polynomial representation

of degree m for y(x). Thus, this CRN computes y(x). Note that y is finite since

0 ≤ [X0] ≤ 1 and 0 ≤ [X1] ≤ 1. Therefore, for every initial state of interest our

proposed CRN computes a stable equilibrium state.

Note that, in general, all the rate constants in our CRNs are assumed to be equal to

each other. More precisely, based on the proof, there are three categories of reactions

with respect to the rate constants: the control generating reactions, the transferring

reactions, and the last two annihilation reactions of the transferring reactions. All

reactions in each of these categories are required to have the same rate constant.

6.2.4 Encoding and Decoding

Our proposed CRNs perform computations on the fractional representation in Eq. 6.1.

In this section we present chemical reactions that convert between this representation

and a “direct representation”, where the value of each variable is represented directly

the concentration of a molecular type.

Encoding

Let a molecular type X denote the direct representation of the input value x and

(X0, X1) denote the molecular pair for its fractional representation. Assume that the

87

total concentration of X0 and X1 is 1 nM. Then we have

[X] = [X1]
[X0]+[X1]

[X0] + [X1] = 1nM
} ⇒ {

[X1] = [X]

[X0] = 1− [X1]
(6.23)

Since the concentration values for X1 and X are the same and subsequent stages do

not consume them, type X can be directly used as type X1 in the fractional represen-

tation.

For generating X0, we must implement subtraction. This is a little tricky. We

designed the following reactions (6.24) for this task. T is initialized to 1 nM and B is

an intermediate molecular type with initial value of zero.

T → X0 + T

B +X0 → ∅

X1 → X1 +B

X0 → ∅ (6.24)

For these reactions the ODEs are

d[X0]

dt
= [T]− [B][X0]− [X0]

d[B]

dt
= [X1]− [B][X0] (6.25)

and at equilibrium we have

d[X0]

dt
= 0⇒ [X0] = [T]− [B][X0] (6.26)

d[B]

dt
= 0⇒ [X1] = [B][X0]. (6.27)

By substituting [B][X0] from Equation (6.27) to (6.26) we have

[X0] = [T]− [X1]. (6.28)

88

Equation (6.28) is valid when [T] ≥ [X1]. Since [X0] cannot be negative, for [T] ≤ [X1],

[X0] = 0. Thus, the equilibrium ODE solution for these reactions is

[X0] =

 [T]− [X1] if [T] ≥ [X1]

0 if [T] ≤ [X1].
(6.29)

If T is initialized to 1 nM, Reactions (6.24) compute [X0] = 1− [X1].

So reactions (6.24) encode the input concentration of X as a pair of concentrations

(X0, X1) in a fractional representation. Here, in fact, X1 can substitute for X, as

discussed above. Note that the concentration of X0 is initialized to zero at the outset.

Decoding

For the output of our molecular computing system, we convert the fractional repre-

sentation back to a direct representation. If the fractional output is represented by the

pair of molecules (Y0, Y1) and the direct output by Y , we have

[Y] =
[Y1]

[Y0] + [Y1]
. (6.30)

In other words, we need to compute the summation of [Y0] and [Y1] and then the

ratio of [Y1] over this summation. For this computation, we use the reactions proposed

in [59]. We will show that Reactions (6.31) compute [Y ′] = [Y0] + [Y1] and Reactions

(6.32) compute the final output [Y] = [Y1]
[Y ′] = [Y1]

[Y0]+[Y1]
.

Y0 → Y0 + Y ′

Y1 → Y1 + Y ′

Y ′ → ∅ (6.31)

Y1 → Y1 + Y

Y ′ + Y → Y ′ (6.32)

According to the ODEs of the Reactions (6.31) we have

d[Y ′]

dt
= [Y0] + [Y1]− [Y ′]

89

and at equilibrium
d[Y ′]

dt
= 0⇒ [Y ′] = [Y0] + [Y1]. (6.33)

Similarly for Reactions (6.32) we have

d[Y]

dt
= [Y1]− [Y][Y ′]

and the equilibrium value of [Y] is

d[Y]

dt
= 0⇒ [Y] =

[Y1]

[Y ′]
=

[Y1]

[Y0] + [Y1]
. (6.34)

Therefore the set of reactions in (6.31) and (6.32) implement the decoding of the

output.

6.2.5 DNA Implementation

The proposed CRN for computing polynomials is general in the sense that it can be

implemented by any chemical or biochemical system with mass-action kinetics. As a

practical medium, we choose DNA strand-displacement reactions. Indeed, we used the

first approach, presented in Chapter 2, to map CRNs to DNA reactions.

We illustrate with the following target function:

y(x) =
1

4
+

9

8
x− 15

8
x2 +

5

4
x3 (6.35)

The CRN includes reactions for the encoder, computation, and decoder parts. The

Bernstein polynomial for y(x) is

g(x) =
2

8
[(1− x)3] +

5

8
[3x(1− x)2] +

3

8
[3x2(1− x)] +

6

8
x3. (6.36)

90

From the Bernstein coefficients, we initialize the types (Bi,0, Bi,1) for i = 0, 1, 2, 3 as

follows:

[B0,0] = 0.6 nM

[B0,1] = 0.2 nM
} ⇒ 0.2

0.6 + 0.2
=

2

8

[B1,0] = 0.3 nM

[B1,1] = 0.5 nM
} ⇒ 0.5

0.3 + 0.5
=

5

8

[B2,0] = 0.5 nM

[B2,1] = 0.3 nM
} ⇒ 0.3

0.5 + 0.3
=

3

8

[B3,0] = 0.2 nM

[B3,1] = 0.6 nM
} ⇒ 0.6

0.2 + 0.6
=

6

8

We map our design to DNA strand-displacement reactions and evaluate it for 11

different input values between 0 and 1. The values of y computed by these CRN are

plotted against x and shown with the target polynomial y(x) in Fig. 6.3. Table 6.2

tabulates the computed values of y(x) and the corresponding errors.

Table 6.2: Accuracy of a DNA strand displacement implementation of a CRN computing
y(x) = 1

4 + 9
8x−

15
8 x

2 + 5
4x

3 using the proposed method.
xin Computed y(x) Error (%)

0 0.261 4.4

0.1 0.3626 5

0.2 0.4207 2.5

0.3 0.4588 1.4

0.4 0.4838 0.8

0.5 0.5010 0.2

0.6 0.5180 0.4

0.7 0.5426 0.9

0.8 0.5823 1.3

0.9 0.6356 3

1 0.723 4

For the DNA implementation we used the parameters based on the examples in

[11]. The maximum strand displacement rate constant is qmax = 106M−1s−1, and the

91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Figure 6.3: The values of y(x) computed by a DNA implementation of proposed CRN.
Blue line: target y(x). Red stars: computed by DNA reactions.

initial concentrations of auxiliary complexes is set to Cmax = 10−5M . If the concen-

tration of auxiliary species, Cmax, is much larger than the maximum concentration of

other species, (i.e., in proposed CRNs Cmax � 1nM) then, as described in [11], we

can assume that over the simulation time the auxiliary concentrations remain effec-

tively constant. Therefore, DNA reactions correctly emulate the CRN independent of

the auxiliary concentrations. Note that, for this assumption, the simulation time and

reaction rates should not be very large values [11]. Although these requirements have

been met in our simulations, errors exist.

As we describe later, the error stems from the fact that each molecular reaction is

implemented by a sequence of DNA strand displacement reactions; the concentrations

of auxiliary molecules, Cmax, is bounded. In fact, if Cmax → ∞ the DNA simulation

results converge to ODE simulation results. Further details concerning the analysis of

errors when implementing CRNs with DNA strand displacement reactions, as well as a

92

proof of convergence of a DNA implementation to the target CRN, can be found in the

Supplementary Information of [11] and [1].

Using the method presented in [11], each chemical reaction with m reactants and

nonzero products can be emulated by m + 1 DNA strand displacement reactions. For

example, bimolecular reactions are mapped to 3 DNA strand displacement reactions.

To illustrate this, we present a sequence of DNA strand displacement reactions that are

used to simulate a bimolecular reaction with three products.

As described in [11], three DNA reactions, R1, R2, and R3, shown in Fig. 6.4

implement the molecular reaction A+B
ki−→ A+B + C.

32

2* 3*1*

A
G

1 20 3

qi654
12
7

5* 6*4*

32

2* 3*1*

H

65

5* 6*4*

32 41
0

qmax
P

B
4 510 6 32

2* 3*1*

H

65

5* 6*4*

1
0 qmax 32

2* 3*1*

waste

65

5* 6*4*

1
0

0
10 4

1

12
7
0

10 4
1

12
7
0

10 4
1

4
10

65 12 7 0 10 41

O

65 12 7 0 10 41

O

6 12 7 0 10 41

6* 12* 7* 0* 10* 4*1*

6
5

12 7 0 10 41

6* 12* 7* 0* 10* 4*1*

8

9

2

3

5

6

T waste

qmax

A
1 20 3

B
4 510 6

12 7 8 9

C

R1

R2

R3

Figure 6.4: DNA strand displacement reactions that emulates reaction A + B
ki−→ A +

B + C.

Unimolecular reactions without product, e.g., Y → ∅, can be implemented by a

single DNA strand displacement reaction. The DNA reaction shown in Fig. 6.5 emulates

the reaction A
ki−→ ∅. The toehold of strand A binds to its complementary part of gate

molecule G and produces double strand W1 and single strand W2. Since W1 and W2

cannot bind together, the reaction is unidirectional.

93

32

2* 3*1*
2 3

A G

1 20 3
1 20 3

2* 3*

W1
W2

qi

Figure 6.5: DNA strand displacement reaction that emulates reaction A
ki−→ ∅.

Table 6.3 summarizes the number of chemical and DNA strand displacement reac-

tions for each group in our proposed method for computing polynomial of degree m.

Table 6.3: Number of chemical and DNA Strand-Displacement reactions for each group
of the proposed CRN for computation of a Bernstein polynomial of degree m.
Group of reactions Type of chemical reaction Number of chemical reactions Number of DNA reactions

Control generating reactions with m reactants (m+ 1) (m+ 1)× (m+ 1)

Transferring
bimolecular 2m+ 2 (2m+ 2)× 3
unimolecular without product 2 2× 1

Total 3m+ 5 m2 + 8m+ 9

6.3 Discussion

In this chapter, we have introduced a new encoding for computation with CRNs:

the value corresponding to each variable consists of the ratio of the concentration of

a molecular type to the sum of two types. Based on this fractional representation, we

proposed a method for computing arbitrary polynomials that map the unit interval [0,1]

to (-1,0). This is a rich class of functions.

Computation of polynomials with chemical kinetics has been attempted before by

Buisman et al. [59]. Compared to our method, their method requires fewer molecular

types and fewer reactions (m molecular types and 3m molecular reactions for a complete

polynomial of degree m). However, unlike our approach, their CRNs are dependent on

reaction rates. In fact, for each coefficient of the desired polynomial, they need a distinct

reaction rate. This is unrealistic. Note that our approach only requires a single rate.

94

Soloveichik et al. [43], as well as earlier work [60, 61, 49], attempted to achieve Turing

universality with chemical reactions. Although it is possible to compute polynomials

with their CRNs, they did not provide a systematic framework for doing so.

The fractional representation that we propose is a nonstandard representation. How-

ever, we note that it is similar to encodings found in nature. Many biological systems

have species with two distinct states. For example, it is common for an enzyme to

have active and inactive states. The ratio of the concentrations of the two states is a

meaningful value. This is quite analogous to our representation.

Clearly, the primary interest of this work is theoretical. CRNs are a fundamental

model of computation, abstract yet conforming to the physical behavior of chemical

systems. Delineating the range of behaviors of such systems has intellectual merit.

These results may also have practical applications.

Control theory has played a remarkable role in mathematical biology, providing a

framework for modeling, designing, and improving the dynamic behavior of systems

such biological oscillators [62, 63, 64, 65]. Polynomials play a central role in control

and oscillation. In fact, the transfer function of a control system, that is the ratio

of its output to its input in the Laplace domain, is the ratio of two polynomials, i.e.,

H(z) = A(z)
B(z) = a0+a1z++anzn

b0+b1z++bmzm
[66]. Furthermore, nonlinear feedback in oscillators can

be implemented by polynomials [67].

Practitioners in synthetic biology are striving to create “embedded controllers” –

viruses and bacteria that are engineered to perform useful molecular computation in

situ where it is needed, for instance for drug delivery and biochemical sensing. Such

embedded controllers may be called upon to perform computation such as filtering or

signal processing. Computing polynomial functions is at the core of many of these

computational tasks.

In the next chapter, we will attempt to generalize the method to compute a wider

class of functions.

Chapter 7

CRNs for Computing

Mathematical Functions using

Fractional Coding

As yet, there is no systematic way to design molecular systems capable of computing

mathematical functions. This chapter presents a systematic methodology to design

CRNs for this goal. Using the fractional coding presented in Chapter 6 and expanding

it for bipolar fractional coding, we propose a framework for design and implementation

common mathematical functions.

7.1 Prior work

Synthetic biology in general, and molecular computing in particular, hold promises

for not only monitoring proteins that have been identified as disease-specific biomark-

ers, but also for delivering drugs and systematically altering the interactions among

molecules. Since early work on DNA computing [6], the field has evolved significantly

95

96

and various applications have been considered, some of which we point out in the follow-

ing paragraphs. There has been noticeable interest in activating and inhibiting pathways

by filtering proteins in different bands [18][68][69]. Furthermore, it has been demon-

strated that DNA and other biological systems can be used to implement simple circuits

such as AND, OR, NAND etc [33]– [70][71][72][73] [74][35] [36] [29]. These circuits have

been used as building blocks for both digital signal processing [12][2][21][75][76], and

mixed-signal (analog and digital) computation [75] [77]. Using these simple circuits,

complex genetic circuits have been constructed to perform computation in cells [78]. To

automate the design of genetic circuits, recently a computer-aided design system has

been presented [78].

Additionally, as a non-conventional design language, chemical reaction networks

(CRNs) have been used to design mathematical functions. Prior work has presented

molecular reactions designed to compute different functions such as polynomials [59]

[79], loga(x)[80], and log(1 + x) [81]. However, no systematic method for molecular im-

plementation of complex mathematical functions, such as exponential and sigmoid, has

been presented before. This chapter presents a systematic method for designing CRNs

that are able to compute a wide range of common mathematical functions. The building

blocks of the proposed CRNs are simple units composed of four chemical reactions. All

chemical reactions in the proposed system have two reactants. It has been shown that

bimolecular chemical reactions, i.e., reactions with two reactants, can be implemented

by DNA in a robust way [1]. Thus, our method provides a systematic way for DNA

implementation of molecular systems that are able to compute mathematical functions.

Molecular computation of mathematical functions may have applications in the field

of machine learning. Machine learning classifiers are becoming increasingly ubiquitous

and their physical realization using different technologies has been considered [82][83].

Due to the remarkable advances in the field of synthetic biology, it is possible to imple-

ment biological machine learning systems in vitro and in vivo. For example cell classifier

genetic logic circuits can sense features of molecules (miRNAs) in living cells, detect their

97

expression patterns, and selectively respond to specific cell types [72] [84] [73][85] [86].

These circuits can potentially lead to the production of personalized smart drugs that

provide therapeutic medicine tailored to specific disease for specific patients[87].

Machine learning classifiers based on neural networks are commonly used today in

many applications where sensor data are collected, features are computed and fed as

input to a neural network [82][83]. In the biology realm, two types of neural networks

have been studied in the literature: first, biological sensory neurons that convert external

stimuli (light, surface electron density, etc.), coming from environment, into internal

responses [88]– [89]; second, biological neural networks whose inputs and outputs are

both molecular concentrations [90]-[91]. The second type is more attractive because it

can work in homogeneous systems like living cells with no need of outside influence.

This chapter considers the second group.

As an early theoretical research, [90] has presented chemical reactions that, based

on the ordinary differential equations of mass action kinetics model, can imitate simple

McClulloch-Pitts neurons. These chemical neurons can be coupled together in order to

build a chemical neural network or finite state machine [92]. Practical implementation of

neurons has not been considered in [90] and contemporaneous work until DNA emerged

in the community as the silicon in the electronics community. Fortunately, DNA nan-

otechnology based on strand displacement reactions has provided a promising medium

for physical implementation of neural networks and encouraged scientists to consider

the realization of DNA neural networks both theoretically and experimentally. For ex-

ample, in the theoretical aspect, [93] described a DNA Hopfield neural network and a

DNA multi-layer perceptron. According to its proposed DNA system, [93] speculated

that networks containing as many as 109 neurons might be feasible. In a later work,

[94] described theoretical DNA implementation of a linear classifier. Beside theoretical

research, experimental work for DNA neural networks has been proposed by researchers

[95]-[96]. However, experimental attempts were not able to completely implement even

98

a single neuron till, for the first time, [58] successfully implemented artificial neural

networks (ANNs) experimentally, using DNA strand displacement.

In general an ANN consists of one or more layers where, in each layer, a neuron

computes a weighted sum followed by a nonlinear activation (transfer) function. Typi-

cally the activation function corresponds to a sigmoid function. Prior work on molecular

implementations of ANNs has considered either a hard-threshold or linear transfer func-

tion as an activation function. The DNA sigmoid function proposed in this chapter can

be used to construct ANNs with nonlinear activation functions.

The contribution of this chapter is developing a framework based on a novel frac-

tional coding approach that is able to synthesize simple bimolecular reactions to im-

plement complex mathematical functions such as exponential, sigmoid, and tangent

hyperbolic. This chapter also demonstrates a DNA implementation of a nonlinear ANN

using the proposed framework, as an application.

In chapter 6 we presented a nontraditional molecular coding, referred to as fractional

representation. In fractional representation a pair of molecular types is assigned to each

variable, e.g., (X0, X1) for a variable x. The value of the variable is determined by the

ratio of the concentrations for the assigned pair,

x =
[X1]

[X0] + [X1]
(7.1)

where [X1] and [X0] represent concentrations of molecules X1 and X0, respectively. Note

that the value of x is confined to the unit interval, [0, 1]. We refer to this representation

as unipolar fractional coding.

Variables with values in the range [−1, 1] can be represented by a different coding

using two molecular types, given by:

x =
[X1]− [X0]

[X0] + [X1]
. (7.2)

We refer to this representation as bipolar fractional coding. In this representation, the

value of x lies between -1 and 1.

99

The novel contribution of this chapter is twofold. First, biomolecular reactions are

proposed to compute operations such as ab, 1 − ab, and sa + (1 − s)b using unipolar

and bipolar fractional coding. These molecular circuits are, respectively, referred to as

Mult, NMult, and MUX. Second, this chapter demonstrates that unipolar and bipo-

lar fractional coding approaches can be used to design CRNs for computing complex

mathematical functions such as e−x, sin(x), and sigmoid(x). The proposed CRNs can

be implemented by biomolecular systems such as DNA.

The unipolar and biploar fractional coding approaches are inspired by digital com-

puting using unipolar and bipolar stochastic logic circuits where numbers are represented

by a bit stream of 0’s and 1’s [97], [98]. In molecular computing X0 and X1 molecules,

respectively, correspond to the grouping of all 0’s and all 1’s. The knowledge of existing

stochastic logic circuits form the basis of proposed new CRNs.

7.2 CRNs for Multiplication Units

Based on the fractional coding we propose novel CRNs for computing multiplication.

These CRNs serve as fundamental units for computing desired functions described in

Section 2. The fundamental multiplication units are referred to as Mult and NMult.

The module Mult computes c = a × b, and the module NMult computes c = 1− a × b

where a, b, and c are in unipolar fractional representation. The modules are described

below.

7.2.1 Mult unit:

The Mult module shown by the symbol in Fig. 7.1(a) computes c as the multipli-

cation of two inputs a and b all in unipolar fractional representation. In other words if

a = [A1]
[A0]+[A1]

and b = [B1]
[B0]+[B1]

then c = [C1]
[C0]+[C1]

= a × b. The set of four reactions in

Fig. 7.1(a) shows the CRN for a multiplication unit, Mult.

100

×

A0
 + B0 → C0

A0 + B1 → C0

A1 + B0 → C0

A1 + B1 → C1

 bac 

ca

b
×

A0
 + B0 → C1

A0 + B1 → C1

A1 + B0 → C1

A1 + B1 → C0

bac 1

c
b

a

a b

1

0

s

b

a c

A0
 + S0 → C0

A1 + S0 → C1

B0 + S1 → C0

B1 + S1 → C1

bsasc )1(

c

A0
 + B0 → C1

A0 + B1 → C0

A1 + B0 → C0

A1 + B1 → C1

bac 

c
b

a

d

A0
 + B0 → C0

A0 + B1 → C1

A1 + B0 → C1

A1 + B1 → C1

bac 

c
b

a

e

× ×

Figure 7.1: Basic molecular modules. a, Multiplication module, Mult, calculates
c = a × b, the multiplication of two input variables a and b in unipolar fractional
representation. The module is implemented by four molecular reactions and represented
by the presented symbol. b, The four molecular reactions and the symbol for Nmult
unit. This module computes c = 1− a× b in unipolar fractional representation. c, The
MUX unit that performs scaled addition. a, b and c can be unipolar or bipolar, whereas
s is in unipolar representation. d, The bipolar Mult unit that performs multiplication in
bipolar fractional representation and its molecular reactions. e, The molecular reactions
and the symbol for bipolar NMult unit. This module computes c = −a × b in bipolar
fractional representation

101

On the basis of both stochastic and ordinary differential equations, we theoretically

prove in Supplementary Section S.1 that these reactions compute c = a× b.

7.2.2 NMult unit:

If we switch C0 and C1 in the molecular reactions of the Mult unit, we obtain the

so called NMult unit which computes 1− a× b. Fig. 7.1(b) shows the symbol and the

set of reactions for the NMult unit.

Similar to the method we used for Multiplication module, it is easy to show that

the reactions listed in 7.1(b) compute c = 1− a× b in unipolar fractional coding. The

details for the proof are in Supplementary Section S1.

The chemical reactions presented in Fig. 7.1 do not save the initial values of the

input molecules of each Mult or NMult units. The reactions can be changed such that

they preserve the values of either one or both of the input molecular pairs, (A0, A1)

and (B0, B1). The details for these alternative Mult and NMult units are presented in

Section S.2 of the Supplementary Information.

Note that for some functions we use another molecular unit, so called MUX, shown

in Fig. 7.1(c). Furthermore, to perform multiplication in bipolar fractional coding, two

different molecular units, shown in Fig. 7.1(d) and (e), are used. These three units are

described in detail and used to compute the bipolar sigmoid function in Section 3.

7.3 Designing CRNs for Computing Functions

In this section we propose a framework for designing CRNs to compute different

functions. Our method is illustrated in Fig. 7.2.

7.3.1 Methodology

In the proposed methodology, the functions are approximated by truncating their

Maclaurin series expansions. Note that other expansion methods such as Taylor series

102

Taylor Expansion MULT/NMLT CRN DNA

A0
 + B0 → C0

A0 + B1 → C0

A1 + B0 → C0

A1 + B1 → C1

 …
…


nx

n

n
f

xf)(
!

)0(
)(

)(
×

×n
b

x)(xf

Figure 7.2: The proposed methodology. This figure shows the required steps for
computing functions based on the proposed methodology. It starts with the approxi-
mation of the desired function as a polynomial using a series expansion method. The
polynomial is then expressed in an equivalent form that only contains Mult and NMult
units. The structure of Mult and NMult elements are mapped to their equivalent chemi-
cal reactions and finally the CRN is implemented by DNA strand displacement reactions.

can also be used. The approximated polynomials are then mapped into equivalent forms

such that they can be implemented using Mult and NMult units. The Mult/NMult

structure is then mapped to chemical reactions and then implemented by DNA. We

describe these steps using f(x) = e−x as an example.

Step 1- Approximate the function

The Taylor series of any function f(x) that is infinitely differentiable at the point a,

corresponds to the power series

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n. (7.3)

If the Taylor series is centered at zero, i.e., a = 0, then the series is called a Maclaurin

series. As an example for f(x) = e−x the Maclaurin expansion is given by:

e−x =

∞∑
n=0

(−x)n

n!
= 1− x+

x2

2!
− x3

3!
+
x4

4!
− (7.4)

103

The series is truncated to a polynomial of degree n, in order to approximate the

desired function. As an example if n = 5, i.e., the first six terms are retained, for

f(x) = e−x we obtain:

e−x = 1− x+
x2

2!
− x3

3!
+
x4

4!
− x5

5!
. (7.5)

Step 2- Reformat the approximation and map it to Mult/NMult units

As the second step, the approximating polynomials obtained in the first step, are

mapped into equivalent forms such that they can be implemented using Mult and NMult

units. The Mult and NMult units are analogous to AND and NAND gates in stochastic

logic; the AND and NAND gates perform the same operations for stochastic bit streams

as Mult and NMult, respectively, do for molecular concentrations in unipolar fractional

encoding. Recent work in stochastic logic [99] has shown that the form of such polyno-

mials can be changed in a way that they can be mapped to a cascade of AND and NAND

logic gates. The approach presented in [99] uses the well known Horner’s rule in order

to map polynomials with alternating positive and negative coefficients and decreasing

magnitudes to AND and NAND gates. This approach can be used for Maclaurin se-

ries of e−x, sin(x), cos(x), log(1 + x), tanh(x), and sigmoid(x). We use the approach

proposed in [99] to change the form of the desired approximating polynomials and then

map them to a cascade of Mult and NMult units. We briefly describe this approach.

Horner’s rule:

Consider a polynomial P (x) of degree n given in its power form as

P (x) = a0 + a1x+ a2x
2 + a3x

3 + ...+ anx
n. (7.6)

According to the details in [99], (7.6) can be rewritten as

P (x) = b0(1− b1x(1− b2x(1− b3x...(1− bn−1x(1− bnx))))...) (7.7)

104

where b0 = a0 and bi = − ai
ai−1

for i = 1, 2, ..., n. Provided 0 ≤ bi ≤ 1 for i = 0, 1,, n,

this representation can be easily mapped to a regular cascade of molecular Mult and

NMult units as described in [99].

In order to guarantee 0 ≤ bi ≤ 1 these requirements must be satisfied:

First, the coefficients of the original polynomial, i.e., the ai’s, should be alternatively

positive and negative. Second, absolute values for all coefficients, i.e., the ai’s, should

be less than one and decrease as the terms’ orders increase. There exist several polyno-

mials that satisfy these requirements. For example Maclaurin series expansion of e−x,

sin(x), cos(x), log(1 + x), tanh(x), and sigmoid(x), listed in equations (41) to (46) of

the Supplementary Information, meet these requirements and can be represented using

Equation (7.7).

For example if we apply the Horner’s rule for the fifth order Maclaurin series of

f(x) = e−x, shown in (7.5), we obtain

e−x = 1− x(1− x

2
(1− x

3
(1− x

4
(1− x

5
)))). (7.8)

Equation (7.8) can be implemented using Mult and NMult units as shown in Table

7.1.

Elements, Ei, of the structure shown in Table 7.1 compute intermediate outputs,

ti in order to progressively compute e−x function using the Equation (7.8). For this

example we list the computation related to each element as follows:

E1: t1 = (1− x
5) E2: t2 = 1

4 t1 E3: t3 = (1− x
4 t1)

E4: t4 = 1
3 t3 E5: t5 = (1− x

3 t3) E6: t6 = 1
2 t5

E7: t7 = (1− x
2 t5) E8: f(x) = 1− xt7 = e−x.

Table 7.1 summarizes the truncated Maclaurin series, reformatted Maclaurin series

using Horner’s rule, and Mult/NMult structure for several other desired functions.

Step3- Synthesize the Chemical Reactions

105

Table 7.1: Truncated Maclaurin series, reformatted Maclaurin series using Horner’s rule,
and Mult/NMult structure for functions in equations (41)-(46) of the Supplementary
Information.

Function Truncated Maclaurin series Reformatted using Equation (7.7)

e−x
1− x+ x2

2! −
x3

3! + x4

4! −
x5

5! 1− x(1− x
2 (1− x

3 (1− x
4 (1− x

5))))

×
× × ×x

1/5
1/4

×
×

1/3
×

×

1/2

e-x
E1

E2 E3
E4 E5 E6 E7 E8

sin(x)
x− x3

3! + x5

5! −
x7

7! x(1− x2

6 (1− x2

20 (1− x2

42)))

×

×

×

×

×

×

×

1/42

x

1/20 1/6

xsin

cos(x)
1− x2

2! + x4

4! −
x6

6! 1− x2

2 (1− x2

12 (1− x2

30))

×
×

×
×

×
×

1/21/121/30

x xcos

log(1 + x)
x− x2

2 + x3

3 −
x4

4 x(1− x
2 (1− 2

3x(1− 3
4x)))

×
×

× ×
× ×

1/22/33/4
)1log(x

x

tanh(x)
x− 1

3x
3 + 2

15x
5 − 17

315x
7 x(1− x2

3 (1− 2
5x

2(1− 17
42x

2)))

×
×

×
×

×
×

×

1/32/517/42

x xtanh

sigmoid(x)

1
2 + x

4 −
x3

48 + x5

480 1− 1
2(1− x

2 (1− x2

12 (1− x2

10)))

×
×

×

x
1/10

×
×

1/12
×

×

1/2

sigmoid(X)

1/2

106

To build the CRN for computing the desired function, the next step is to synthesize

the related chemical reactions for each element used in the Mult/NMult structure.

Depending on the unit type, either the set of reactions presented in Fig. 7.1 (a) or

(b) is used.

After designing chemical reactions the final step is to map them to DNA reactions

as described in Section 7.5.

7.4 Molecular Perceptron

This section describes implementation of a single-layered neural network, also called

a perceptron, by molecular reactions. As it is shown in Fig. 7.3(a), the system first com-

putes the inner product of an input vector and a coefficient vector as y =
∑N

i=1wixi+w0

and then it uses the sigmoid function to compute the final output z as z =sigmoid(y)

for the soft decision of whether the output should be close to 0 or 1. For the perceptron

system that we implement, the inputs are binary, that is to say either xi = 0 or xi = 1,

and the coefficients, i.e., wi
,s, are between -1 and 1. All multiply-add operations are

implemented using bipolar Mult units. Since the input of the sigmoid function is be-

tween -1 and 1, we implement sigmoid function using bipolar fractional coding. Note

that prior biomolecular implementations of artificial neural networks (ANNs) have con-

sidered either hard limit or linear activation functions [58][94]. No prior publication

has considered molecular ANNs using sigmoid activation function. In this section we

describe the implementation of bipolar MUX unit and bipolar Mult and NMult units.

7.4.1 MUX unit:

The MUX module shown by the symbol in Fig. 7.1(c) computes c as the weighted

addition of two inputs a and b as c = a×(1−s)+b×s, where 0 ≤ s ≤ 1. a, b, and c can be

in unipolar or bipolar fractional representation while the weight s is always considered as

107

.

.

.

x1

x2

xN

∑

+1

w2

w1

wN

w0 (bias)

Sigmoid fn. [ѱ(.)]

y
z=ѱ(y)

sigmoid(y)

×
y ×

1/60

1

0

1/2

×1/6

1

0

1/2

×-1

(a) (b)

(c)

Figure 7.3: Molecular Perceptron. a, A perceptron system with 32 binary inputs and
1 output between 0 and 1. b, Molecular implementation of bipolar sigmoid function
using bipolar Mult, NMult and MUX units. c, Results for the molecular simulation
and MATLAB simulation of the perceptron system. Considering 0.5 as the threshold
for decision, the results show that the molecular and MATLAB simulation agree with
respect to the final decision.

108

unipolar. The set of four reactions in Fig. 7.1(c) shows the CRN for a MUX unit for both

unipolar and bipolar fractional coding. Mass-action kinetic equations for both unipolar

and bipolar fractional coding are discussed in Supplementary Information Section S.4.

7.4.2 Bipolar Mult unit:

The bipolar Mult module shown by the symbol in Fig. 7.1(d) computes c as the

multiplication of two inputs a and b, where a, b and c are represented in bipolar fractional

representation. In other words if a = [A1]−[A0]
[A0]+[A1]

and b = [B1]−[B0]
[B0]+[B1]

then c = [C1]−[C0]
[C0]+[C1]

=

a× b. The set of four reactions in Fig. 7.1(d) represents the CRN for a multiplication

unit in bipolar fractional coding. In Supplementary Information Section S.3 we prove

that these reactions compute c = a× b.

7.4.3 Bipolar NMult unit:

Analogous to the way that we obtained NMult from Mult unit in unipolar fractional

coding, if we switch C0 and C1 in the reactions of the bipolar Mult unit, we obtain the

so called bipolar NMult unit which computes −a× b. Fig. 7.1(e) shows the symbol and

the set of reactions for the bipolar NMult unit. Similar to the method we used for Mult

unit, it is easy to show that the reactions listed in 7.1(e) compute c = −a× b in bipolar

fractional coding. The details for the proof are in Supplementary Information Section

S.3.

7.4.4 Bipolar sigmoid function

The bipolar fractional representation can be used to implement the sigmoid func-

tion, presented in Section 7.3.1 for unipolar fractional representation. Therefore, the

function can be computed for inputs between -1 and 1, i.e., −1 ≤ x ≤ 1. The output

of this function, however, is still in the unit interval [0,1] and can be represented by

unipolar fractional representation. In fact, for x ∈ [−1, 1] the corresponding output

109

range is [0.2689, 0.7311] As it is shown in [99], the sigmoid function for bipolar input

and unipolar output in stochastic logic can be implemented by electronic logic circuits,

namely, XOR and XNOR gates and Multiplexers. These electronic circuits perform

multiplication and weighted addition for stochastic bit streams analogous to the same

operations that bipolar Mult, NMult, and MUX units in Fig. 7.1 perform for molecular

systems. Accordingly, we map the circuit to the cascade of proposed molecular units as

shown in Fig. 7.3(b). The inner product can be implemented by N bipolar Mult units

having the same output. Details for the molecular implementation of the inner product

are described in Section S.5 of the Supplementary Information.

By cascading the inner product part and the sigmoid function, we can implement the

desired perceptron system as it is shown in Fig. 7.3(a). We map this molecular circuit

to DNA strand-displacement reactions and simulate it for N = 32 with the bias value

of zero, i.e., w0 = 0. We repeat the simulation for 100 different sets of input vectors.

The results are compared to the theoretical results obtained by MATLAB simulation

in Fig. 7.3(c). Since the molecular inner product computes y = 1
N

∑N
i=1wixi instead of

y =
∑N

i=1wixi, the amplitude for the computed output is less than that of the MATLAB

output. Although the DNA computed outputs do not perfectly match with MATLAB

simulation, if we consider 0.5 as the threshold for a binary decision, the DNA results

and MATLAB results agree with respect to the final decision. Next section describes

the details for DNA implementation of the proposed molecular systems.

7.5 DNA Implementation

In order to validate our proposed method using a biological medium, we implement

the Mult/NMult circuits by DNA strand displacement (DSD) reactions. With biological

origin, the DSD reactions can closely emulate mass-action kinetics of CRNs. Indeed, we

use the second approach described in Chapter 2 for DNA implementation of our designs.

We choose the second SNA implementation approach because recently Chen, et al., [1]

110

showed that, using this approach, bimolecular reactions, such as A + B → C, can

be implemented by linear, double-stranded DNA complexes that are compatible with

natural DNA. Our computational units are constructed from bimolecular reactions and

can be biologically realized in a highly pure form using bacterial cloning as proposed in

[1]. This means that the experimental limitations in the length of synthetic DNA strands

can be bypassed. With longer strands the larger number of distinct molecular types can

be designed and more complex CRNs can be realized by DNA molecules. Furthermore,

as the experimental results in [1] show, for bimolecular chemical reactions, the kinetics

of DNA implementation matches the mass-action kinetics model precisely. Since our

designed CRNs are composed of bimolecular reactions, these can be implemented using

the framework developed in [1].

Table 7.2 presents the accuracy of the proposed method, by listing the computed

values of functions at eleven equally separated points in the interval [0,1]. The computed

result, for each function, is reported 50 hrs after the simulation starts.The table also lists

the mean square error for computation of each function at the eleven points. The error

maybe due to several factors: the approximation of the function with their truncated

series expansion, the implementation of the related CRNs by DSD reactions, and the

limited simulation time, i.e., 50 hrs. As the results show the error is less than 1× 10−3.

Table 7.2: Computed values of functions with the proposed CRNs compared to their
exact values.

Function x=0 x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1 Error

e−x
computed 0.9568 0.8770 0.7975 0.7228 0.6609 0.5951 0.5295 0.4772 0.4300 0.3872 0.3482

5.02e-4
exact 1 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.3679

sin(x)
computed 0 0.1045 0.2062 0.3043 0.3970 0.4833 0.5570 0.6261 0.6844 0.7460 0.7967

4.63e-4
exact 0 0.0998 0.1986 0.2955 0.3894 0.4794 0.5646 0.64421 0.7173 0.7833 0.8414

cos(x)
computed 0.9728 0.9757 0.9641 0.9407 0.9129 0.8671 0.8071 0.7461 0.6778 0.6029 0.5221

3.16e-4
exact 1 0.9950 0.9800 0.9553 0.9210 0.8775 0.8253 0.7648 0.6967 0.6216 0.5403

log(1 + x)
computed 0.0090 0.0985 0.1868 0.2675 0.3410 0.4075 0.4660 0.5212 0.5707 0.6217 0.6699

1.8e-4
exact 0 0.0953 0.1823 0.2623 0.3364 0.4054 0.4700 0.5306 0.5877 0.6418 0.6931

tanh(x)
computed 0 0.0935 0.1883 0.2823 0.3701 0.4574 0.5277 0.5826 0.6246 0.6682 0.7038

7.35e-4
exact 0 0.0996 0.1973 0.2913 0.3799 0.4621 0.5370 0.6043 0.6640 0.7162 0.7615

sigmoid(x)
computed 0.5196 0.5453 0.5657 0.5878 0.6068 0.6212 0.6366 0.6570 0.6721 0.6906 0.7084

2.5e-4
exact 0.5000 0.5250 0.5498 0.5744 0.5987 0.6225 0.6457 0.6682 0.6900 0.7109 0.7311

For each of the six target functions in this chapter we perform the DNA simulation

based on the template in Fig. 2.2. For a visual comparison, each function is computed

111

0 10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

 Time (hrs)

 C
o
n
ce
n
tr
a
ti
o
n

 (
n

M
)

0 10 20 30 40 50

0.2

0.4

0.6

0.8

e−0.7 = 𝟎. 𝟒𝟗𝟔𝟔

e−0.3 = 𝟎. 𝟕𝟒𝟎𝟖

0 10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

sigmoid(𝟎. 𝟑) = 𝟎. 𝟓𝟕𝟒𝟒 sigmoid(𝟎. 𝟕) = 𝟎. 𝟔𝟔𝟖𝟐

0 10 20 30 40 50

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50

0.2

0.4

0.6

0.8

sin(0.3) = 𝟎. 𝟐𝟗𝟓𝟓 sin(0.7) = 𝟎. 𝟔𝟒𝟒𝟐

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

cos(0.3) = 𝟎. 𝟗𝟓𝟓𝟑

0 10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cos(0.7) = 𝟎. 𝟕𝟔𝟒𝟖

log(1+0.3) = 𝟎. 𝟐𝟔𝟐𝟒 log(1+0.7) = 𝟎. 𝟓𝟑𝟎𝟔

0 10 20 30 40 50

0.05

0.10

0.15

0.20

0.25

0.30

tanh(0.3) = 𝟎. 𝟐𝟗𝟏𝟑

0 10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

0.6

tanh(0.7) = 𝟎. 𝟔𝟎𝟒𝟒

Figure 7.4: DNA simulation results. The DNA reaction kinetics for computation
of e−x, sin(x), cos(x), log(1 + x), tanh(x), and sigmoid(x) for x=0.3, and x=0.7. Each
row is related to one function. The details for DNA implementation are listed in Sup-
plementary Information Section S.7

112

for 11 different inputs 0:0.1:1 and the results are demonstrated in Fig. 7.5. The DNA

computed outputs are shown by red stars and the exact values of functions are shown

as blue lines. The DNA computed values follow the exact values with an acceptable

accuracy.

Figure 7.5: Exact and computed values of the functions. Computed values of
functions using our proposed molecular systems along their exact graphs for e−x, sin(x),
cos(x), log(1+x), tanh(x), and sigmoid(x). Blue lines: exact values, red stars: computed
values.

7.6 Discussion

As yet, there is no systematic way to design molecular systems capable of computing

mathematical functions. This chapter presents a systematic methodology to design

CRNs for this goal. Furthermore, the proposed method is unique in that it relies

exclusively on bimolecular reactions. According to recent work [1], bimolecular reactions

are compatible with natural DNA. This means that, the computational elements of the

113

proposed CRNs can be biologically realized in a highly pure form by bacterial cloning,

and can potentially be used for in vivo applications.

The Computation of polynomials has been presented in prior work [79]. Based on

[79], a polynomial of degree n is converted to the equivalent Bernstein polynomial of

degree m, where n ≤ m, and is then mapped to a CRN. Although the method presented

in [79] can be used to compute truncated Maclaurin series of desired functions, it uses

complex molecular reactions with m reactants and at least m+1 products, with m ≥ 2.

The basic issue for having molecular reactions with more than two reactants is that they

require large complexes. The trouble with using large complexes is that these can lead

to DNA synthesis errors and are harder to be purified. The proposed systems, however,

are only composed of bimolecular reactions and can be experimentally synthesized with

a high level of purity.

Although the proposed molecular circuits are compatible with the experimental

framework presented in [1], the proposed molecular circuits need to be experimentally

demonstrated. Future work needs to be directed towards experimental validation of the

theoretical framework presented in this chapter. Future work also needs to be directed

towards extending the framework to complex genetic circuits where computing is carried

out in cell.

Chapter 8

Conclusions and Future

Directions

8.1 Conclusion

In this research, we explore the molecular implementation of several forms of com-

putation: Signal processing, Markov chains, polynomials, and mathematical functions.

In molecular systems signals are represented by time-varying concentrations of differ-

ent molecular types, in contrast to electronic systems where signals are represented by

time-varying voltage values. Although our designs are based on CRNs, a general and

technology-independent programming language, we validate them by DNA as a fast

growing biological technology.

We have presented a cross-disciplinary research framework that combines signal

processing, analog and digital electronic circuit design, and synthetic biology to ad-

dress the development of molecular computing circuits. Our research benefits from the

well-established knowledge and techniques of very large scale integration (VLSI) imple-

mentation of DSP algorithms. We adjust and employ these techniques to design scalable

molecular circuits with the same functionality.

114

115

Molecular systems are not substitutes for electronic computers. Indeed, the applica-

tions and challenges for these systems are different. In terms of applications, molecular

systems will never be useful for fast number crunching. Rather, they are designed for

in vivo/in vitro environments where, compared to electronic circuits, molecular systems

are more compatible with the environment.

Table 8.1: Comparison between molecular (DNA) and electronics (silicon) computing
systems.

AspectAspectAspect
DNA-basedDNA-basedDNA-based

Silicon-basedSilicon-basedSilicon-based
analog Discrete-time digital

Addition free free expensive expensive

Multiplication less expensive less expensive expensive expensive

Fanout expensive expensive free free

Delay/Signal Transfer very expensive almost free

Bound on Performance communication bounded computation bounded

Speed ultra-slow very fast

Area ∼ nm ∼ nm

Parallelism highly-parallel less-parallel

Level of Integration no integration highly-integrated

Application Area in vivo/in vitro industrial/consumer

In addition to application, we point out several other fundamental differences in

characteristics of molecular and electronic circuits. These are summarized in Table

8.1. Fanout operations in electronic circuits are free but are expensive in molecular

implementations. Addition operations are free in molecular systems but are expensive

in electronic circuits. The critical path of an electronic circuit is typically bounded

by computation time; the delay elements enable reduction of critical path and faster

computation. However, molecular implementations of delay elements require inherently

slow transfer reactions. In fact, in contrast to electronic circuits, the most challenging

part of molecular systems is delay unit. The speed of molecular systems is bounded

by communication as opposed to computation. The computations in molecular systems

are inherently highly parallel unlike in electronic systems where parallelism requires a

significant increase in hardware resources. Finally, the electronic circuits are highly

116

integrated while the molecular systems are not suitable for highly integrated implemen-

tations. DNA and electronic systems also differ fundamentally with respect to storage

properties. DNA systems can hold their concentrations indefinitely while the charge or

stored value in an electronic system can leak and needs to be refreshed periodically.

8.2 Future Directions

For the molecular signal processing, future research direction would be a detailed

study of the characteristics of continuous-time, discrete-time and digital processing

molecular systems including noise analysis. For instance, the study would address how

the precision correlates with changing the molecular concentrations and how robust

the designs are with respect to parametric variations. In addition, the impact of spe-

cific DSP techniques, used in VLSI circuits, such as pipelining, retiming, folding, and

unfolding on biomolecular designs would be investigated.

The main bottleneck in current implementations is computational speed. Unlike

in electronic systems, where the speed is limited by changes in electric charge, the

speed in molecular systems is limited by changes in molecular concentrations, which are

inherently slow. A second future direction will be the development of faster molecu-

lar computing systems. New scheduling approaches where multiple computations are

mapped into different phases of transfer will be investigated. Reducing currently achiev-

able sample periods from hundreds of hours to a few hours, or even a few minutes, will

enable experimental demonstration of some example signal processing functions using

DNA. Furthermore, other biomolecular mediums such as enzymatic reactions will be

considered to speed up the computational performance.

For the Markov chain computation, future work will be directed toward modeling

of higher order Markov processes and generalizing the method for different types of

random processes.

117

Although in this dissertation we used Maclaurin series expansion of mathematical

functions, future research would be the investigation of other expansions such as the

Lagrange expansion in order to implement other functions or to achieve more efficient

implementations. What kinds of other molecular computations can be performed with

fractional representation would be the direction of a future work. In this context,

implementation of artificial neural networks can be investigated.

References

[1] Dalchau N. Srinivas N. Phillips A. Cardelli L. Soloveichik D. Chen, Y. and G. Seelig.

Programmable chemical controllers made from dna. Nature Nanotechnology, 8:755–

762, 2013.

[2] H. Jiang, S. Salehi, M. Riedel, and K. Parhi. Discrete-time signal processing with

DNA. ACS Synthetic Biology, 2(5):245–254, 2013.

[3] R. H. Carlson. Biology Is Technology: The Promise, Peril, and New Business of

Engineering Life. Cambridge, MA: Harvard UP, 2010.

[4] R. Carlson. The pace and proliferation of biological technologies. Biosecurity and

Bioterrorism: Biodefense Strategy, Practice, and Science, 1:203–214, Sep. 2003.

[5] Michael Conrad. Molecular computing. Advances in Computers, 31:235–324, 1990.

[6] L. Adleman. Molecular computation of solutions to combinatorial problems. Sci-

ence, 266(11):1021–1024, 1994.

[7] J. Chen and D. H. Wood. Computation with biomolecules. Proceedings of the

National Academy of Sciences, 97(4):1328–1330, 2000.

[8] D. T. Gillespie. A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. Journal of Computational Physics,

22(4):403–434, 1976.

118

119

[9] D. T. Gillespie. Stochastic simulation of chemical kinetics. Annual Review of

Physical Chemistry, 58:35–55, 2006.

[10] B. Yurke, A. J. Turberfield, A. P. Mills, Jr, F. C. Simmel, and J. Neumann. A

DNA-fuelled molecular machine made of DNA. Nature, 406:605–608, 2000.

[11] D. Soloveichik, G. Seelig, and E. Winfree. DNA as a universal substrate for chemical

kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398,

2010.

[12] H. Jiang, M. D. Riedel, and K. K. Parhi. Digital logic with molecular reactions.

In IEEE International Conference on Computer Aided Design (ICCAD), pages

721–727. IEEE, 2013.

[13] H. Jiang, M. Riedel, and K.K. Parhi. Synchronous sequential computation with

molecular reactions. Proc. of 2011 ACM/IEEE Design Automation Conference,

pages 836–841, 2011.

[14] H. Jiang, M.D. Riedel, and K.K. Parhi. Digital signal processing with molecular

reactions. IEEE Design and Test Magazine, (Special Issue on Bio-Design Automa-

tion in Synthetic Biology), 29(3):21–31, 2012.

[15] K. K. Parhi. VLSI Digital Signal Processing Systems. John Wiley & Sons, 1999.

[16] I. R. Epstein and J. A. Pojman. An Introduction to Nonlinear Chemical Dynamics:

Oscillations, Waves, Patterns, and Chaos. Oxford Univ Press, 1998.

[17] P. De Kepper, I. R. Epstein, and K. Kustin. A systematically designed homogeneous

oscillating reaction: the arsenite-iodate-chlorite system. Journal of the American

Chemical Society, 103(8):2133–2134, 2008.

[18] M. Samoilov, A. Arkin, and J. Ross. Signal processing by simple chemical systems.

Journal of Physical Chemistry A, 106(43):10205–10221, 2002.

120

[19] K. Oishi and E. Klavins. Biomolecular implementation of linear i/o systems. IET

Syst. Biol., 5:252–260, 2011.

[20] H. Jiang, M. Riedel, and K.K. Parhi. Asynchronous computations with molecular

reactions. Asilomar Conf. on Signals, Systems and Computers, pages 493–497,

2011.

[21] S. A. Salehi, M. D. Riedel, and K. K. Parhi. Asynchronous discrete-time signal

processing with molecular reactions. Proc. of Asilomar Conference on Signals,

Systems, and Computers, pages 1767–1772, 2014.

[22] H. M. Sauro and K. Kim. Synthetic biology: It’s an analog world. Nature, 497:572–

573, 2013.

[23] R. Sarpeshkar. Analog synthetic biology. Philos. Transact. A. Math. Phys. Eng.

Sci., 372(20130110), 2014.

[24] R. Sarpeshkar. Analog versus digital: extrapolating from electronics to neurobiol-

ogy. Neural Comput., 10:1601–1638, 1998.

[25] R. Daniel, J. R. Rubens, R. Sarpeshkar, and T. K. Lu. Synthetic analog computa-

tion in living cells. Nature, 497:619–623, 2013.

[26] S. Hayat and T. Hinze. Toward integration of in vivo molecular computing devices:

successes and challenges. HFSP Journal, 5(2):239–243, 2008.

[27] T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, N.J., 1980.

[28] V. V. Kulkarni, H. Jiang, T. Chanyaswad, and M. Riedel. A biomolecular imple-

mentation of systems described by linear and nonlinear ODE’s. In International

Workshop on Biodesign Automation, 2013.

[29] A. Tamsir, J. J. Tabor, and C. A. Voigt. Robust multicellular computing using

genetically encoded nor gates and chemical ‘wires’. Nature, 469:212–215, 2011.

121

[30] L. Qian and E. Winfree. Scaling up digital circuit computation with dna strand

displacement cascades. Science, 332:1196–1201, 2011.

[31] P. Siuti, J. Yazbek, and T.K. Lu. Synthetic circuits integrating logic and memory

in living cells. Nature Biotechnology, 31:448–452, 2013.

[32] R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja, and I. Ne-

travali. Genetic circuit building blocks for cellular computation, communications,

and signal processing. Natural Computing, 2:47–84, 2003.

[33] T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic toggle

switch in escherichia coli. Nature, 403(2000):339–342, 2000.

[34] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro. An autonomous

molecular computer for logical control of gene expression. Nature, 429(6990):423–

429, 2004.

[35] D. Endy. Foundations for engineering biology. Nature, 438:449–453, 2005.

[36] K. Ramalingam, J. R. Tomshine, J. A. Maynard, and Y. N. Kaznessis. Forward

engineering of synthetic bio-logical AND gates. Biochemical Engineering Journal,

47(1–3):38–47, 2009.

[37] T.S. Moon, C. Lou, A. Tamsi, B.C. Stanton, and C. A. Voigt. Genetic programs

constructed from layered logic gates in single cells. Nature, 491:249–253, 2012.

[38] J. C. Anderson, E. J. Clarke, A. P. Arkin, and C. A. Voigt. Environmentally

controlled invasion of cancer cells by engineered bacteria. Journal of Molecular

Biology, 355(4):619–627, 2006.

[39] D. Ro, E. Paradise, M. Ouellet, K. Fisher, K. Newman, J. Ndungu, K. Ho,

R. Eachus, T. Ham, M. Chang, S. Withers, Y. Shiba, R. Sarpong, , and J. Keasling.

Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

Nature, 440:940–943, 2006.

122

[40] S. Venkataramana, R. M. Dirks, C. T. Ueda, and N. A. Pierce. Selective cell

death mediated by small conditional RNAs. Proceedings of the National Academy

of Sciences, 2010 (in press).

[41] D. M. Widmaier, D. Tullman-Ercek, E. A. Mirsky, R. Hill, S. Govindarajan, J. Min-

shull, and C. A. Voigt. Engineering the Salmonella type III secretion system to

export spider silk monomers. Molecular Systems Biology, 5(309):1–9, 2009.

[42] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. 3rd ed.

Prentice Hall Press Upper Saddle River, NJ, USA, 2009.

[43] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. Computation with finite

stochastic chemical reaction networks. Natural Computing, 7(4), 2008.

[44] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation of

chemical systems with many species and many channels. The Journal of Physical

Chemistry A, 104(9):1876–1889, 2000.

[45] F. Horn and R. Jackson. General mass action kinetics. Archive for Rational Me-

chanics and Analysis, 47:81–116, 1972.

[46] P. Érdi and J. Tóth. Mathematical Models of Chemical Reactions: Theory and

Applications of Deterministic and Stochastic Models. Manchester University Press,

1989.

[47] D. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of

Physical Chemistry, 81(25):2340–2361, 1977.

[48] S. Strogatz. Nonlinear Dynamics and Chaos with Applications to Physics, Biology,

Chemistry, and Engineering. Perseus Books, 1994.

[49] M. O. Magnasco. Chemical kinetics is turing universal. Phys. Rev. Lett.,

78(6):1190–1193, Feb 1997.

123

[50] Doty D. Chen, H. and D. Soloveichik. Deterministic function computation with

chemical reaction networks. DNA Computing and Molecular Programming, LNCS,

Springer, 7433:24–42, 2012.

[51] Doty D. Chen, H. and D. Soloveichik. Rate-independent computation in continuous

chemical reaction networks. Conference on Innovations in Theoretical Computer

Science, pages 313–326, 2014.

[52] B. R. Gaines. Stochastic computing. In proceedings of AFIP spring join computer

conference, ACM, pages 149–156, 1967.

[53] W. Qian and M. D. Riedel. The synthesis of robust polynomial arithmetic with

stochastic logic. In Design Automation Conference, pages 648–653, 2008.

[54] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja. An architecture for

fault-tolerant computation with stochastic logic. IEEE Transactions on Computers,

60(1):93–105, 2011.

[55] W. Qian, M. D. Riedel, and I. Rosenberg. Uniform approximation and Bernstein

polynomials with coefficients in the unit interval. European Journal of Combina-

torics, 32(3):448–463, 2011.

[56] S. A. Salehi, M. D. Riedel, and K. K. Parhi. Markov chain computations using

moleular reactions. IEEE International Conference on Digital Signal Processing

(DSP), pages 689–693, 2015.

[57] R. Farouki and V. Rajan. On the numerical condition of polynomials in Bernstein

form. Computer Aided Geometric Design, 4(3):191–216, 1987.

[58] L. Qian and E. Winfree. Neural network computation with dna strand displacement

cascades. Nature, 475:368372, 2011.

124

[59] ten Eikelder H. M. M. Hilbers P. A. J. Buisman, H. J. and A. M. L. Liekens.

Computing algebraic functions with biochemical reaction networks. Artif. Life,

15(1):5–19, 2009.

[60] A. M. L. Liekens and C. T. Fernando. Turing complete catalytic particle computers.

In Lecture Notes in Computer Science – Advances in Artificial Life, volume 4648,

pages 1202–1211. Springer, 2007.

[61] Aspnes J. Angluin, D. and D. Eisenstat. Fast computation by population pro-

tocols with a leader. Technical Report YALEU/DCS/TR-1358, Yale University

Department of Computer Science, 2006.

[62] Workshop:Biological Systems and Networks. Ima thematic year on con-

trol theory and its applications. http://www.ima.umn.edu/2015-2016/W11.16-

20.15/abstracts.html, 2015.

[63] P. A. Iglesias and P. Ingalls, B. Control theory and systems biology. MIT Press,

2010.

[64] Buzi G. Doyle J. C. Chandra, F. A. Glycolytic oscillations and limits on robust

efficiency. Science, 333(6039):187–192, 2013.

[65] Franco E. Agrawal, D. K. and R. Schulman. A self-regulating biomolecular com-

parator for processing oscillatory signals. Journal of The Royal Society Interface,

12(111), 2015.

[66] R. C. Dorf and R. H. Bishop. Modern Control Systems 9th ed. Prentice Hall, 2001.

[67] G. Stan and R. Sepulchre. Analysis of interconnected oscillators by dissipativity

theory. IEEE Trans. Autom. Control, 52(2):256270, 2007.

[68] S. C. Moenke G. Prince V. L. Meena A. Thomas A. P. Skupin A. Taylor C. W.

Thurley, K. Tovey and M. Falcke. Reliable encoding of stimulus intensities within

125

random sequences of intracellular ca2+ spikes. Science Signaling, 7((331): ra59

DOI: 10.1126/scisignal.2005237), 2014.

[69] R. R. Takayama S. Sumit, M. Neubig and J. J. Linderman. Band-pass processing

in a gpcr signaling pathway selects for nfat transcription factor activation. Integr.

Biol., 7:1378–1386, 20.

[70] R. Weiss, G. E. Homsy, and T. F. Knight. Toward in vivo digital circuits. In

DIMACS Workshop on Evolution as Computation, pages 1–18, 1999.

[71] K. Rinaudo, L. Bleris, R. Maddamsetti, S. Subramanian, R. Weiss, and Y. Be-

nenson. A universal rnai-based logic evaluator that operates in mammalian cells.

Nature biotechnology, 25(7):795–801, 2007.

[72] Z. Xie, L. Wroblewska, L. Prochazka, R. Weiss, and Y. Benenson. Multi-input rnai-

based logic circuit for identification of specific cancer cells. Science, 333(6047):1307–

1311, 2011.

[73] Jiang Y. Chen H. Liao W. Li Z. Weiss R. Li, Y. and Z. Modular Xie. construction

of mammalian gene circuits using tale transcriptional repressors. Nat. Chem. Biol.,

11(207-2013), 2015.

[74] Gil B. Ben-Dor U. Adar R. Beneson, Y. and E. Shapiro. An autonomous molecular

computer for logical control of gene expression. Nature, 429:423–429, 1987.

[75] Jiang H. Riedel-M.D. Salehi, S.A. and K.K. Parhi. Molecular sensing and com-

puting systems (invited paper). IEEE Transactions on Molecular, Biological, and

Multi-Scale Communications, 1(3):249–264, 2015.

[76] P. Senum and M. D. Riedel. Rate-independent constructs for chemical computation.

PLoS ONE, 6(6), 2011.

[77] Selvaggio G. Rubens, J.R. and T.K. Lu. Synthetic mixed-signal computation in

living cells. Nat. Commun., 7:11658, 2016.

126

[78] Shin J. Vaidyanathan P. Paralanov V. Strychalski E.A. Ross D. Densmore D.

Nielsen A.A.K., Der B.S. and Voigt C.A. Genetic circuit design automation. Sci-

ence, (DOI: 10.1126/science.aac7341), 2016.

[79] Parhi K. K. Salehi, S. A. and M. D. Riedel. Chemical reaction networks for com-

puting polynomials. ACS Synthetic Biology, 6(1):76–83, 2017.

[80] Sawlekar R. Foo, M. and Bates D.G. Exploiting the dynamic properties of covalent

modification cycle for the design of synthetic analog biomolecular circuitry. Journal

of Biological Engineering, 10:15, 2016.

[81] C.T. Chou. Chemical reaction networks for computing logarithm. submitted to

Synthetic Biology.

[82] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2013.

[83] E. Alpaydin. Introduction to Machine Learning, volume 3rd Edition. MIT press,

2014.

[84] Y. Benenson. Biomolecular computing systems: principles, progress and potential.

Nature Reviews Genetics, 13:455–468, 2012.

[85] Endo K. Takahashi S. Funakoshi S. Takei I. Katayama S. Toyoda T. Kotaka M.

Takaki T. Umeda M. et al. Miki, K. Efficient detection and purification of cell

populations using synthetic microrna switches. Cell Stem Cell, 16:699–711, 2015.

[86] Weinberg B.H. Cha S.S. Goodloe M. Wong W.W. Sayeg, M.K. and X. Han. Ra-

tionally designed microrna-based genetic classifiers target specific neurons in the

brain. ACS Synth. Biol., 4:788–799, 2015.

[87] Beerenwinkel N. Mohammadi, P. and Y. Benenson. Automated design of synthetic

cell classifier circuits using a two-step optimization strategy. Cell Systems, 4(2):207–

21, 2017.

127

[88] Sahu S. Bandyopadhyay, A. and D. Fujita. Smallest artificial molecular neural-

net for collective and emergent information processing. Applied physics letters,

95(11):113702, 2009.

[89] Chen L. X. Lei J. L. Luo H. Q. Huang, W. T. and N. B. Li. Molecular neuron:

From sensing to logic computation, information encoding, and encryption. Sensors

and Actuators: B. Chemical, 239:704–710, 2017.

[90] Weinberger E. D. Hjelmfelt, A. and J. Ross. Chemical implementation of neural

networks and turing machines. Proc. Natl Acad. Sci. USA, 88:10983–10987, 1991.

[91] Jr Turberfield M. Turberfield A. J. Yurke B. Mills, A. P. and P. M. Platzman.

Experimental aspects of dna neural network computation. Soft Comput., 5:1018,

2001.

[92] Weinberger E. D. Hjelmfelt, A. and J. Ross. Chemical implementation of finite-

state machines. Proc. Natl. Acad. Sci. U.S.A., 89:383, 1992.

[93] Yurke B. Mills, A. P. and P. M. Platzman. Article for analog vector algebra com-

putation. Biosystems, 52:175–180, 1999.

[94] W. Zhang, M. Ha, D. Braga, M. Renn, C.D. Frisbie, and C.H. Kim. A 1v printed

organic dram cell based on ion-gel gated transistors with a sub-10nw-per-cell refresh

power. In International Solid-State Circuits Conference Digest, pages 326–328,

2011.

[95] Pemberton M. Hjelmfelt A. Laplante, J. P. and J. Ross. Experiments on pattern

recognition by chemical kinetics. J. Phys. Chem., 99:1006310065, 1995.

[96] H. W. et al. Lim. In vitro molecular pattern classification via dna-based weighted-

sum operation. Biosystems, 100:1–7, 2010.

[97] B. Gaines. Stochastic computing systems. In Advances in Information Systems

Science, volume 2, chapter 2, pages 37–172. Plenum Press, 1969.

128

[98] A. Alaghi and Hayes j. Survey of stochastic computing. ACM Transactions on

Embedded computing systems (TECS), 12:92, 2013.

[99] K. K. Parhi and Y. Liu. Computing arithmetic functions using stochastic logic

by series expansion. IEEE Transactions on Emerging Technologies in Computing

(TETC), (DOI: 10.1109/TETC.2016.2618750), 2016.

Appendix A

List of molecular Reactions

In this chapter, we list chemical reaction networks and DNA-level reactions for the

molecular circuits presented in this thesis. Each chemical reaction discussed in this

thesis is mapped to DNA level using the method described in [11].

A.1 Molecular Reactions

A.1.1 molecular perceptron

X10 +W10
k−→ X10 +W10 + C1

X10 +W11
k−→ X10 +W11 + C0

X11 +W10
k−→ X11 +W10 + C0

X11 +W11
k−→ X11 +W11 + C1

X20 +W20
k−→ X20 +W20 + C1

X20 +W21
k−→ X20 +W21 + C0

X21 +W20
k−→ X21 +W20 + C0

X21 +W21
k−→ X21 +W21 + C1

129

130

X30 +W30
k−→ X30 +W30 + C1

X30 +W31
k−→ X30 +W31 + C0

X31 +W30
k−→ X31 +W30 + C0

X31 +W31
k−→ X31 +W31 + C1

X40 +W40
k−→ X40 +W40 + C1

X40 +W41
k−→ X40 +W41 + C0

X41 +W40
k−→ X41 +W40 + C0

X41 +W41
k−→ X41 +W41 + C1

X50 +W50
k−→ X50 +W50 + C1

X50 +W51
k−→ X50 +W51 + C0

X51 +W50
k−→ X51 +W50 + C0

X51 +W51
k−→ X51 +W51 + C1

X60 +W60
k−→ X60 +W60 + C1

X60 +W61
k−→ X60 +W61 + C0

X61 +W60
k−→ X61 +W60 + C0

X61 +W61
k−→ X61 +W61 + C1

X70 +W70
k−→ X70 +W70 + C1

X70 +W71
k−→ X70 +W71 + C0

X71 +W70
k−→ X71 +W70 + C0

X71 +W71
k−→ X71 +W71 + C1

X80 +W80
k−→ X80 +W80 + C1

X80 +W81
k−→ X80 +W81 + C0

X81 +W80
k−→ X81 +W80 + C0

X81 +W81
k−→ X81 +W81 + C1

131

X90 +W90
k−→ X90 +W90 + C1

X90 +W91
k−→ X90 +W91 + C0

X91 +W90
k−→ X91 +W90 + C0

X91 +W91
k−→ X91 +W91 + C1

X100 +W100
k−→ X100 +W100 + C1

X100 +W101
k−→ X100 +W101 + C0

X101 +W100
k−→ X101 +W100 + C0

X101 +W101
k−→ X101 +W101 + C1

X110 +W110
k−→ X110 +W110 + C1

X110 +W111
k−→ X110 +W111 + C0

X111 +W110
k−→ X111 +W110 + C0

X111 +W111
k−→ X111 +W111 + C1

X120 +W120
k−→ X120 +W120 + C1

X120 +W121
k−→ X120 +W121 + C0

X121 +W120
k−→ X121 +W120 + C0

X121 +W121
k−→ X121 +W121 + C1

X130 +W130
k−→ X130 +W130 + C1

X130 +W131
k−→ X130 +W131 + C0

X131 +W130
k−→ X131 +W130 + C0

X131 +W131
k−→ X131 +W131 + C1

X140 +W140
k−→ X140 +W140 + C1

X140 +W141
k−→ X140 +W141 + C0

X141 +W140
k−→ X141 +W140 + C0

X141 +W141
k−→ X141 +W141 + C1

132

X150 +W150
k−→ X150 +W150 + C1

X150 +W151
k−→ X150 +W151 + C0

X151 +W150
k−→ X151 +W150 + C0

X151 +W151
k−→ X151 +W151 + C1

X160 +W160
k−→ X160 +W160 + C1

X160 +W161
k−→ X160 +W161 + C0

X161 +W160
k−→ X161 +W160 + C0

X161 +W161
k−→ X161 +W161 + C1

X170 +W170
k−→ X170 +W170 + C1

X170 +W171
k−→ X170 +W171 + C0

X171 +W170
k−→ X171 +W170 + C0

X171 +W171
k−→ X171 +W171 + C1

X180 +W180
k−→ X180 +W180 + C1

X180 +W181
k−→ X180 +W181 + C0

X181 +W180
k−→ X181 +W180 + C0

X181 +W181
k−→ X181 +W181 + C1

X190 +W190
k−→ X190 +W190 + C1

X190 +W191
k−→ X190 +W191 + C0

X191 +W190
k−→ X191 +W190 + C0

X191 +W191
k−→ X191 +W191 + C1

X200 +W200
k−→ X200 +W200 + C1

X200 +W201
k−→ X200 +W201 + C0

X201 +W200
k−→ X201 +W200 + C0

X201 +W201
k−→ X201 +W201 + C1

133

X210 +W210
k−→ X210 +W210 + C1

X210 +W211
k−→ X210 +W211 + C0

X211 +W210
k−→ X211 +W210 + C0

X211 +W211
k−→ X211 +W211 + C1

X220 +W220
k−→ X220 +W220 + C1

X220 +W221
k−→ X220 +W221 + C0

X221 +W220
k−→ X221 +W220 + C0

X221 +W221
k−→ X221 +W221 + C1

X230 +W230
k−→ X230 +W230 + C1

X230 +W231
k−→ X230 +W231 + C0

X231 +W230
k−→ X231 +W230 + C0

X231 +W231
k−→ X231 +W231 + C1

X240 +W240
k−→ X240 +W240 + C1

X240 +W241
k−→ X240 +W241 + C0

X241 +W240
k−→ X241 +W240 + C0

X241 +W241
k−→ X241 +W241 + C1

X250 +W250
k−→ X250 +W250 + C1

X250 +W251
k−→ X250 +W251 + C0

X251 +W250
k−→ X251 +W250 + C0

X251 +W251
k−→ X251 +W251 + C1

X260 +W260
k−→ X260 +W260 + C1

X260 +W261
k−→ X260 +W261 + C0

X261 +W260
k−→ X261 +W260 + C0

X261 +W261
k−→ X261 +W261 + C1

134

X270 +W270
k−→ X270 +W270 + C1

X270 +W271
k−→ X270 +W271 + C0

X271 +W270
k−→ X271 +W270 + C0

X271 +W271
k−→ X271 +W271 + C1

X280 +W280
k−→ X280 +W280 + C1

X280 +W281
k−→ X280 +W281 + C0

X281 +W280
k−→ X281 +W280 + C0

X281 +W281
k−→ X281 +W281 + C1

X290 +W290
k−→ X290 +W290 + C1

X290 +W291
k−→ X290 +W291 + C0

X291 +W290
k−→ X291 +W290 + C0

X291 +W291
k−→ X291 +W291 + C1

X300 +W300
k−→ X300 +W300 + C1

X300 +W301
k−→ X300 +W301 + C0

X301 +W300
k−→ X301 +W300 + C0

X301 +W301
k−→ X301 +W301 + C1

X310 +W310
k−→ X310 +W310 + C1

X310 +W311
k−→ X310 +W311 + C0

X311 +W310
k−→ X311 +W310 + C0

X311 +W311
k−→ X311 +W311 + C1

X320 +W320
k−→ X320 +W320 + C1

X320 +W321
k−→ X320 +W321 + C0

X321 +W320
k−→ X321 +W320 + C0

X321 +W321
k−→ X321 +W321 + C1

135

X330 +W330
k−→ X330 +W330 + C1

X330 +W331
k−→ X330 +W331 + C0

X331 +W330
k−→ X331 +W330 + C0

X331 +W331
k−→ X331 +W331 + C1

C0
k−→ nth

C1
k−→ nth

2C0
k−→ C11 + C0 + C0

C0 + C1
k−→ C10 + C0 + C1

C1 + C0
k−→ C10 + C1 + C0

2C1
k−→ C11 + C1 + C1

C10
k−→ nth

C11
k−→ nth

A20 + C10
k−→ C20 +A20 + C10

A20 + C11
k−→ C21 +A20 + C11

A21 + C10
k−→ C21 +A21 + C10

A21 + C11
k−→ C20 +A21 + C11

C20
k−→ nth

C21
k−→ nth

A30 + C20
k−→ C30 +A30 + C20

A30 + C21
k−→ C31 +A30 + C21

A31 +B30
k−→ C30 +A31 +B30

A31 +B31
k−→ C31 +A31 +B31

C30
k−→ nth

C31
k−→ nth

136

C10 + C30
k−→ C41 + C10 + C30

C10 + C31
k−→ C40 + C10 + C31

C11 + C30
k−→ C40 + C11 + C30

C11 + C31
k−→ C41 + C11 + C31

C40
k−→ nth

C41
k−→ nth

A50 + C40
k−→ C50 +A50 + C40

A50 + C41
k−→ C51 +A50 + C41

A51 +B50
k−→ C50 +A51 +B50

A51 +B51
k−→ C51 +A51 +B51

C50
k−→ nth

C51
k−→ nth

C0 + C50
k−→ C60 + C0 + C50

C0 + C51
k−→ C61 + C0 + C51

C1 + C50
k−→ C61 + C1 + C50

C1 + C51
k−→ C60 + C1 + C51

C60
k−→ nth

C61
k−→ nth

C60
k−→ C60 + cp

C61
k−→ C61 + cp

cp
k−→ nth

C61
k−→ C61 + c

cp+ c
k−→ cp

137

A.1.2 molecular ADC 3bit

i1 + T1
k−→ W1

i1 + x2n
k−→ i1 + x2p

T1 + x2p
k−→ T1 + x2n

x2p+ i1 + T2
k−→ W2 + x2p

x2n+W2
k−→ T2 + x2n+ i1

x2p+ i1 + x1n
k−→ x1p+ i1 + x2p

x2p+ x1p+ T2
k−→ T2 + x1n+ x2p

x2n+W1 + Tp2
k−→ Wp2 + x2n

x2p+Wp2
k−→ Tp2 + x2p+W1

x2n+W1 + x1n
k−→ x1p+W1 + x2n

x2n+ x1p+ Tp2
k−→ Tp2 + x1n+ x2n

x2p+ x1p+ i1 + T3
k−→ W3 + x2p+ x1p

x1n+W3
k−→ T3 + i1 + x1n

x2n+W3
k−→ T3 + i1 + x2n

x2p+ x1p+ i1 + x0n
k−→ x0p+ x2p+ x1p+ i1

x2p+ x1p+ T3 + x0p
k−→ x0n+ x2p+ x1p+ T3

x2p+ x1n+W2 + Tp3
k−→ Wp3 + x2p+ x1n

x2n+Wp3
k−→ Tp3 +W2 + x2n

x1p+Wp3
k−→ Tp3 +W2 + x1p

x2p+ x1n+W2 + x0n
k−→ x0p+ x2p+ x1n+W2

x2p+ x1n+ Tp3 + x0p
k−→ x0n+ x2p+ x1n+ Tp3

x2n+ x1p+W1 + Tpp3
k−→ Wpp3 + x2n+ x1p

x2p+Wpp3
k−→ Tpp3 +W1 + x2p

x1n+Wpp3
k−→ Tpp3 +W1 + x1n

138

x2n+ x1p+W1 + x0n
k−→ x0p+ x2n+ x1p+W1

x2n+ x1p+ Tpp3 + x0p
k−→ x0n+ x2n+ x1p+ Tpp3

x2n+ x1n+Wp2 + Tppp3
k−→ Wppp3 + x2n+ x1n

x2p+Wppp3
k−→ Tppp3 +Wp2 + x2p

x1p+Wppp3
k−→ Tppp3 +Wp2 + x1p

x2n+ x1n+Wp2 + x0n
k−→ x0p+ x2n+ x1n+Wp2

x2n+ x1n+ Tppp3 + x0p
k−→ x0n+ x2n+ x1n+ Tppp3

A.1.3 molecular DAC 3bit

b3 + o3
k−→ out+ b3 +m3

u3 +m3 + out
k−→ o3 + u3

b2 + o2
k−→ out+ b2 +m2

u2 +m2 + out
k−→ o2 + u2

b1 + o1
k−→ out+ b1 +m1

u1 +m1 + out
k−→ o1 + u1

i1 + T1
k−→ W1

i1 + u1
k−→ i1 + b1

T1 + b1
k−→ T1 + u1

b1 + i1 + T2
k−→ W2 + b1

u1 +W2
k−→ T2 + u1 + i1

b1 + i1 + u2
k−→ b2 + i1 + b1

b1 + b2 + T2
k−→ T2 + u2 + b1

139

u1 +W1 + Tp2
k−→ Wp2 + u1

b1 +Wp2
k−→ Tp2 + b1 +W1

u1 +W1 + u2
k−→ b2 +W1 + u1

u1 + b2 + Tp2
k−→ Tp2 + u2 + u1

b1 + b2 + i1 + T3
k−→ W3 + b1 + b2

u2 +W3
k−→ T3 + i1 + u2

u1 +W3
k−→ T3 + i1 + u1

b1 + b2 + i1 + u3
k−→ b3 + b1 + b2 + i1

b1 + b2 + T3 + b3
k−→ u3 + b1 + b2 + T3

b1 + u2 +W2 + Tp3
k−→ Wp3 + b1 + u2

u1 +Wp3
k−→ Tp3 +W2 + u1

b2 +Wp3
k−→ Tp3 +W2 + b2

b1 + u2 +W2 + u3
k−→ b3 + b1 + u2 +W2

b1 + u2 + Tp3 + b3
k−→ u3 + b1 + u2 + Tp3

u1 + b2 +W1 + Tpp3
k−→ Wpp3 + u1 + b2

b1 +Wpp3
k−→ Tpp3 +W1 + b1

u2 +Wpp3
k−→ Tpp3 +W1 + u2

u1 + b2 +W1 + u3
k−→ b3 + u1 + b2 +W1

u1 + b2 + Tpp3 + b3
k−→ u3 + u1 + b2 + Tpp3

u1 + u2 +Wp2 + Tppp3
k−→ Wppp3 + u1 + u2

b1 +Wppp3
k−→ Tppp3 +Wp2 + b1

b2 +Wppp3
k−→ Tppp3 +Wp2 + b2

u1 + u2 +Wp2 + u3
k−→ b3 + u1 + u2 +Wp2

u1 + u2 + Tppp3 + b3
k−→ u3 + u1 + u2 + Tppp3

140

A.1.4 molecular Adder 3bit

i1 + T1
k−→ W1

i1 + x2n
k−→ i1 + x2p

T1 + x2p
k−→ T1 + x2n

x2p+ i1 + T2
k−→ W2 + x2p

x2n+W2
k−→ T2 + x2n+ i1

x2p+ i1 + x1n
k−→ x1p+ i1 + x2p

x2p+ x1p+ T2
k−→ T2 + x1n+ x2p

x2n+W1 + Tp2
k−→ Wp2 + x2n

x2p+Wp2
k−→ Tp2 + x2p+W1

x2n+W1 + x1n
k−→ x1p+W1 + x2n

x2n+ x1p+ Tp2
k−→ Tp2 + x1n+ x2n

x2p+ x1p
k−→ q1 + x2p+ x1p

2q1
k−→ nth

i1 + T3
k−→ q2

q1 + q2
k−→ W3

W3 + x1n
k−→ i1 + T3 + x1n

W3 + x2n
k−→ i1 + T3 + x2n

q2 + x1n
k−→ i1 + T3 + x1n

q2 + x2n
k−→ i1 + T3 + x2n

x1n+W3
k−→ T3 + i1 + x1n

x2n+W3
k−→ T3 + i1 + x2n

i1 + x0n
k−→ q3 + i1

T3 + q3
k−→ x0n+ T3

141

q1 + q3
k−→ x0p

x2p+ x1p+ T3 + x0p
k−→ x0n+ x2p+ x1p+ T3

x2p+ x1n+W2 + Tp3
k−→ Wp3 + x2p+ x1n

x2n+Wp3
k−→ Tp3 +W2 + x2n

x1p+Wp3
k−→ Tp3 +W2 + x1p

x2p+ x1n+W2 + x0n
k−→ x0p+ x2p+ x1n+W2

x2p+ x1n+ Tp3 + x0p
k−→ x0n+ x2p+ x1n+ Tp3

x2n+ x1p+W1 + Tpp3
k−→ Wpp3 + x2n+ x1p

x2p+Wpp3
k−→ Tpp3 +W1 + x2p

x1n+Wpp3
k−→ Tpp3 +W1 + x1n

x2n+ x1p+W1 + x0n
k−→ x0p+ x2n+ x1p+W1

x2n+ x1p+ Tpp3 + x0p
k−→ x0n+ x2n+ x1p+ Tpp3

x2n+ x1n+Wp2 + Tppp3
k−→ Wppp3 + x2n+ x1n

x2p+Wppp3
k−→ Tppp3 +Wp2 + x2p

x1p+Wppp3
k−→ Tppp3 +Wp2 + x1p

x2n+ x1n+Wp2 + x0n
k−→ x0p+ x2n+ x1n+Wp2

x2n+ x1n+ Tppp3 + x0p
k−→ x0n+ x2n+ x1n+ Tppp3

i2 + T1y
k−→ W1y

i2 + y2n
k−→ i2 + y2p

T1y + y2p
k−→ T1y + y2n

y2p+ i2 + T2y
k−→ W2y + y2p

y2n+W2y
k−→ T2y + y2n+ i2

y2p+ i2 + y1n
k−→ y1p+ i2 + y2p

y2p+ y1p+ T2y
k−→ T2y + y1n+ y2p

y2n+W1y + Tp2y
k−→ Wp2y + y2n

142

y2p+Wp2y
k−→ Tp2y + y2p+W1y

y2n+W1y + y1n
k−→ y1p+W1y + y2n

y2n+ y1p+ Tp2y
k−→ Tp2y + y1n+ y2n

y2p+ y1p+ i2 + T3y
k−→ W3y + y2p+ y1p

y1n+W3y
k−→ T3y + i2 + y1n

y2n+W3y
k−→ T3y + i2 + y2n

y2p+ y1p+ i2 + y0n
k−→ y0p+ y2p+ y1p+ i2

y2p+ y1p+ T3y + y0p
k−→ y0n+ y2p+ y1p+ T3y

y2p+ y1n+W2y + Tp3y
k−→ Wp3y + y2p+ y1n

y2n+Wp3y
k−→ Tp3y +W2y + y2n

y1p+Wp3y
k−→ Tp3y +W2y + y1p

y2p+ y1n+W2y + y0n
k−→ y0p+ y2p+ y1n+W2y

y2p+ y1n+ Tp3y + y0p
k−→ y0n+ y2p+ y1n+ Tp3y

y2n+ y1p+W1y + Tpp3y
k−→ Wpp3y + y2n+ y1p

y2p+Wpp3y
k−→ Tpp3y +W1y + y2p

y1n+Wpp3y
k−→ Tpp3y +W1y + y1n

y2n+ y1p+W1y + y0n
k−→ y0p+ y2n+ y1p+W1y

y2n+ y1p+ Tpp3y + y0p
k−→ y0n+ y2n+ y1p+ Tpp3y

y2n+ y1n+Wp2y + Tppp3y
k−→ Wppp3y + y2n+ y1n

y2p+Wppp3y
k−→ Tppp3y +Wp2y + y2p

y1p+Wppp3y
k−→ Tppp3y +Wp2y + y1p

y2n+ y1n+Wp2y + y0n
k−→ y0p+ y2n+ y1n+Wp2y

y2n+ y1n+ Tppp3y + y0p
k−→ y0n+ y2n+ y1n+ Tppp3y

143

c2p+ o4
k−→ out+ c2p+m4

c2n+m4 + out
k−→ o4 + c2n

s2p+ o3
k−→ out+ s2p+m3

s2n+m3 + out
k−→ o3 + s2n

s1p+ o2
k−→ out+ s1p+m2

s1n+m2 + out
k−→ o2 + s1n

s0p+ o1
k−→ out+ s0p+m1

s0n+m1 + out
k−→ o1 + s0n

x0n+ y0p
k−→ x0n+ y0p+G1p

x0p+ y0n
k−→ x0p+ y0n+G1p

2G1p
k−→ nth

G1p+ s0n
k−→ s0p

x0n+ y0n
k−→ x0n+ y0n+G1n

x0p+ y0p
k−→ x0p+ y0p+G1n

2G1n
k−→ nth

G1n+ s0p
k−→ s0n

x0n+ c0p
k−→ x0n+ c0n

y0n+ c0p
k−→ y0n+ c0n

x0p+ y0p
k−→ x0p+ y0p+G2

2G2
k−→ nth

G2 + c0n
k−→ c0p

x1n+ y1p
k−→ x1n+ y1p+G3p

x1p+ y1n
k−→ x1p+ y1n+G3p

2G3p
k−→ nth

G3p+ z3n
k−→ z3p

144

x1n+ y1n
k−→ x1n+ y1n+G3n

x1p+ y1p
k−→ x1p+ y1p+G3n

2G3n
k−→ nth

G3n+ z3p
k−→ z3n

z3n+ c0p
k−→ z3n+ c0p+G4p

z3p+ c0n
k−→ z3p+ c0n+G4p

2G4p
k−→ nth

G4p+ s1n
k−→ s1p

z3n+ c0n
k−→ z3n+ c0n+G4n

z3p+ c0p
k−→ z3p+ c0p+G4n

2G4n
k−→ nth

G4n+ s1p
k−→ s1n

z3n+ z5p
k−→ z3n+ z5n

c0n+ z5p
k−→ c0n+ z5n

z3p+ c0p
k−→ z3p+ c0p+G5

2G5
k−→ nth

G5 + z5n
k−→ z5p

x1n+ z6p
k−→ x1n+ z6n

y1n+ z6p
k−→ y1n+ z6n

x1p+ y1p
k−→ x1p+ y1p+G6

2G6
k−→ nth

G6 + z6n
k−→ z6p

z5p+ c1n
k−→ z5p+ c1p

z6p+ c1n
k−→ z6p+ c1p

145

z5n+ z6n
k−→ z5n+ z6n+G7

2G7
k−→ nth

G7 + c1p
k−→ c1n

x2n+ y2p
k−→ x2n+ y2p+G8p

x2p+ y2n
k−→ x2p+ y2n+G8p

2G8p
k−→ nth

G8p+ z8n
k−→ z8p

x2n+ y2n
k−→ x2n+ y2n+G8n

x2p+ y2p
k−→ x2p+ y2p+G8n

2G8n
k−→ nth

G8n+ z8p
k−→ z8n

z8n+ c1p
k−→ z8n+ c1p+G9p

z8p+ c1n
k−→ z8p+ c1n+G9p

2G9p
k−→ nth

G9p+ s2n
k−→ s2p

z8n+ c1n
k−→ z8n+ c1n+G9n

z8p+ c1p
k−→ z8p+ c1p+G9n

2G9n
k−→ nth

G9n+ s2p
k−→ s2n

z8n+ z10p
k−→ z8n+ z10n

c1n+ z10p
k−→ c1n+ z10n

z8p+ c1p
k−→ z8p+ c1p+G10

2G10
k−→ nth

G10 + z10n
k−→ z10p

x2n+ z11p
k−→ x2n+ z11n

146

y2n+ z11p
k−→ y2n+ z11n

x2p+ y2p
k−→ x2p+ y2p+G11

2G11
k−→ nth

G11 + z11n
k−→ z11p

z10p+ c2n
k−→ z10p+ c2p

z11p+ c2n
k−→ z11p+ c2p

z10n+ z11n
k−→ z10n+ z11n+G12

2G12
k−→ nth

G12 + c2p
k−→ c2n

A.1.5 molecular Markov

AV +A1
k−→ BV +A1

AV +A2
k−→ SV +A2

BV +B1
k−→ CV +B1

BV +B2
k−→ AV +B2

CV + C1
k−→ DV + C1

CV + C2
k−→ BV + C2

DV +D1
k−→ EV +D1

DV +D2
k−→ CV +D2

EV + E1
k−→ FV + E1

EV + E2
k−→ DV + E2

FV + F1
k−→ GV + F1

147

FV + F2
k−→ EV + F2

GV +G1
k−→ HV +G1

GV +G2
k−→ FV +G2

HV +H1
k−→ ENDV +H1

HV +H2
k−→ GV +H2

A.1.6 y(x) = 3
4
x2 − x+ 3

4
Molecular

X10 +X00
ks−→ S0

X10 +X01
ks−→ S1

X11 +X00
ks−→ S1

X11 +X01
ks−→ S2

C00 + S0
ks−→ Y 0

C01 + S0
ks−→ Y 1

C10 + S1
ks−→ Y 0

C11 + S1
ks−→ Y 1

C20 + S2
ks−→ Y 0

C21 + S2
ks−→ Y 1

A.1.7 molecular encoder

X
k−→ X1 +X

X1
k−→ nth

T
k−→ X0 + T

148

X1
k−→ X1 +Xp

X0
k−→ nth

X0 +Xp
k−→ nth

A.1.8 molecular decoder

Y 0
k−→ Y 0 + Y p

Y 1
k−→ Y 1 + Y p

Y p
k−→ nth

Y 1
k−→ Y 1 + Y

Y p+ Y
k−→ Y p

A.1.9 molecular e-x

A10 +Ap10
k−→ C11 +A10 +Ap10

A10 +Ap11
k−→ C11 +A10 +Ap11

A11 +Ap10
k−→ C11 +A11 +Ap10

A11 +Ap11
k−→ C10 +A11 +Ap11

C10
k−→ nth

C11
k−→ nth

A20 + C10
k−→ C20 +A20 + C10

A20 + C11
k−→ C20 +A20 + C11

A21 + C10
k−→ C20 +A21 + C10

A21 + C11
k−→ C21 +A21 + C11

C20
k−→ nth

C21
k−→ nth

149

A10 + C20
k−→ C31 +A10 + C20

A10 + C21
k−→ C31 +A10 + C21

A11 + C20
k−→ C31 +A11 + C20

A11 + C21
k−→ C30 +A11 + C21

C30
k−→ nth

C31
k−→ nth

A40 + C30
k−→ C40 +A40 + C30

A40 + C31
k−→ C40 +A40 + C31

A41 + C30
k−→ C40 +A41 + C30

A41 + C31
k−→ C41 +A41 + C31

C40
k−→ nth

C41
k−→ nth

A10 + C40
k−→ C51 +A10 + C40

A10 + C41
k−→ C51 +A10 + C41

A11 + C40
k−→ C51 +A11 + C40

A11 + C41
k−→ C50 +A11 + C41

C50
k−→ nth

C51
k−→ nth

A50 + C50
k−→ C60 +A50 + C50

A50 + C51
k−→ C60 +A50 + C51

A51 + C50
k−→ C60 +A51 + C50

A51 + C51
k−→ C61 +A51 + C51

C60
k−→ nth

C61
k−→ nth

150

A10 + C60
k−→ C71 +A10 + C60

A10 + C61
k−→ C71 +A10 + C61

A11 + C60
k−→ C71 +A11 + C60

A11 + C61
k−→ C70 +A11 + C61

C70
k−→ nth

C71
k−→ nth

A10 + C70
k−→ C81 +A10 + C70

A10 + C71
k−→ C81 +A10 + C71

A11 + C70
k−→ C81 +A11 + C70

A11 + C71
k−→ C80 +A11 + C71

C80
k−→ nth

C81
k−→ nth

x
k−→ x+A11

A11
k−→ nth

T
k−→ A10 + T

A11
k−→ A11 + yn

A10
k−→ nth

A10 + yn
k−→ nth

C80
k−→ C80 + cp

C81
k−→ C81 + cp

cp
k−→ nth

C81
k−→ C81 + c

cp+ c
k−→ cp

151

A.1.10 molecular bipolar sigmoid

2X0
k−→ C11 +X0 +X0

X0 +X1
k−→ C10 +X0 +X1

X1 +X0
k−→ C10 +X1 +X0

2X1
k−→ C11 +X1 +X1

C10
k−→ nth

C11
k−→ nth

A20 + C10
k−→ C20 +A20 + C10

A20 + C11
k−→ C21 +A20 + C11

A21 + C10
k−→ C21 +A21 + C10

A21 + C11
k−→ C20 +A21 + C11

C20
k−→ nth

C21
k−→ nth

A30 + C20
k−→ C30 +A30 + C20

A30 + C21
k−→ C31 +A30 + C21

A31 +B30
k−→ C30 +A31 +B30

A31 +B31
k−→ C31 +A31 +B31

C30
k−→ nth

C31
k−→ nth

C10 + C30
k−→ C41 + C10 + C30

C10 + C31
k−→ C40 + C10 + C31

C11 + C30
k−→ C40 + C11 + C30

C11 + C31
k−→ C41 + C11 + C31

C40
k−→ nth

C41
k−→ nth

152

A50 + C40
k−→ C50 +A50 + C40

A50 + C41
k−→ C51 +A50 + C41

A51 +B50
k−→ C50 +A51 +B50

A51 +B51
k−→ C51 +A51 +B51

C50
k−→ nth

C51
k−→ nth

X0 + C50
k−→ C60 +X0 + C50

X0 + C51
k−→ C61 +X0 + C51

X1 + C50
k−→ C61 +X1 + C50

X1 + C51
k−→ C60 +X1 + C51

C60
k−→ nth

C61
k−→ nth

A.1.11 molecular unipolar sigmoid

2A10
k−→ C10 +A10 +A10

A10 +A11
k−→ C10 +A10 +A11

A11 +A10
k−→ C10 +A11 +A10

2A11
k−→ C11 +A11 +A11

C10
k−→ nth

C11
k−→ nth

A20 + C10
k−→ C21 +A20 + C10

A20 + C11
k−→ C21 +A20 + C11

A21 + C10
k−→ C21 +A21 + C10

A21 + C11
k−→ C20 +A21 + C11

C20
k−→ nth

C21
k−→ nth

153

A30 + C20
k−→ C30 +A30 + C20

A30 + C21
k−→ C30 +A30 + C21

A31 + C20
k−→ C30 +A31 + C20

A31 + C21
k−→ C31 +A31 + C21

C30
k−→ nth

C31
k−→ nth

C10 + C30
k−→ C41 + C10 + C30

C10 + C31
k−→ C41 + C10 + C31

C11 + C30
k−→ C41 + C11 + C30

C11 + C31
k−→ C40 + C11 + C31

C40
k−→ nth

C41
k−→ nth

A50 + C40
k−→ C50 +A50 + C40

A50 + C41
k−→ C50 +A50 + C41

A51 + C40
k−→ C50 +A51 + C40

A51 + C41
k−→ C51 +A51 + C41

C50
k−→ nth

C51
k−→ nth

A10 + C50
k−→ C61 +A10 + C50

A10 + C51
k−→ C61 +A10 + C51

A11 + C50
k−→ C61 +A11 + C50

A11 + C51
k−→ C60 +A11 + C51

C60
k−→ nth

C61
k−→ nth

154

C60 +A70
k−→ C71 + C60 +A70

C60 +A71
k−→ C71 + C60 +A71

C61 +A70
k−→ C71 + C61 +A70

C61 +A71
k−→ C70 + C61 +A71

C70
k−→ nth

C71
k−→ nth

A.1.12 molecular Fully async FIR

X + a4
ks−→ A+ Cp

2A
kf−→ Dpp

2Cp
kf−→ yp

Dp+ a4
ks−→ yp

yp+ a1
ks−→ Y

Dpp+ a2
ks−→ Dp

2src
ks−→ 2src+ a1

2src
ks−→ 2src+ a2

2src
ks−→ 2src+ a3

2src
ks−→ 2src+ a4

Dp+ a1
kf−→ Dp

X + a1
kf−→ X

yp+ a2
kf−→ yp

Dpp+ a3
kf−→ Dpp

Y + a4
kf−→ y

155

A.1.13 molecular Fully async IIR

D1 + a4
ks−→ Dp2 + Cp+ F

2Cp
kf−→ C2

2C2
kf−→ C4

2C4
kf−→ yp

2F
kf−→ F2

2F2
kf−→ F4

2F4
kf−→ x

D2 + a4
ks−→ Ep+H

2Ep
kf−→ E2

2E2
kf−→ E4

2E4
kf−→ yp

2H
kf−→ H2

2H2
kf−→ H4

2H4
kf−→ x

x+ a1
ks−→ A+Dp1

2A
kf−→ A2

2A2
kf−→ A4

2A4
kf−→ yp

Dp1 + a2
ks−→ D1

Dp2 + a2
ks−→ D2

156

2src
ks−→ 2src+ a1

2src
ks−→ 2src+ a2

2src
ks−→ 2src+ a3

2src
ks−→ 2src+ a4

D1 + a1
kf−→ D1

D2 + a1
kf−→ D2

x+ a2
kf−→ x

Dp1 + a3
kf−→ Dp1

Dp2 + a3
kf−→ Dp2

yp+ a4
kf−→ yp

A.2 DNA Reactions

A.2.1 perceptron DNA

X10 + gateL[1]
k−→ gateH[1] + strandB[1]

gateH[1] + strandB[1]
qmax−→ X10 + gateL[1]

W10 + gateH[1]
qmax−→ strandO[1]

strandO[1] + gateT [1]
qmax−→ X10 +W10 + C1

X10 + gateL[2]
k−→ gateH[2] + strandB[2]

gateH[2] + strandB[2]
qmax−→ X10 + gateL[2]

W11 + gateH[2]
qmax−→ strandO[2]

strandO[2] + gateT [2]
qmax−→ X10 +W11 + C0

157

X11 + gateL[3]
k−→ gateH[3] + strandB[3]

gateH[3] + strandB[3]
qmax−→ X11 + gateL[3]

W10 + gateH[3]
qmax−→ strandO[3]

strandO[3] + gateT [3]
qmax−→ X11 +W10 + C0

X11 + gateL[4]
k−→ gateH[4] + strandB[4]

gateH[4] + strandB[4]
qmax−→ X11 + gateL[4]

W11 + gateH[4]
qmax−→ strandO[4]

strandO[4] + gateT [4]
qmax−→ X11 +W11 + C1

X20 + gateL[5]
k−→ gateH[5] + strandB[5]

gateH[5] + strandB[5]
qmax−→ X20 + gateL[5]

W20 + gateH[5]
qmax−→ strandO[5]

strandO[5] + gateT [5]
qmax−→ X20 +W20 + C1

X20 + gateL[6]
k−→ gateH[6] + strandB[6]

gateH[6] + strandB[6]
qmax−→ X20 + gateL[6]

W21 + gateH[6]
qmax−→ strandO[6]

strandO[6] + gateT [6]
qmax−→ X20 +W21 + C0

X21 + gateL[7]
k−→ gateH[7] + strandB[7]

gateH[7] + strandB[7]
qmax−→ X21 + gateL[7]

W20 + gateH[7]
qmax−→ strandO[7]

strandO[7] + gateT [7]
qmax−→ X21 +W20 + C0

X21 + gateL[8]
k−→ gateH[8] + strandB[8]

gateH[8] + strandB[8]
qmax−→ X21 + gateL[8]

W21 + gateH[8]
qmax−→ strandO[8]

strandO[8] + gateT [8]
qmax−→ X21 +W21 + C1

158

X30 + gateL[9]
k−→ gateH[9] + strandB[9]

gateH[9] + strandB[9]
qmax−→ X30 + gateL[9]

W30 + gateH[9]
qmax−→ strandO[9]

strandO[9] + gateT [9]
qmax−→ X30 +W30 + C1

X30 + gateL[10]
k−→ gateH[10] + strandB[10]

gateH[10] + strandB[10]
qmax−→ X30 + gateL[10]

W31 + gateH[10]
qmax−→ strandO[10]

strandO[10] + gateT [10]
qmax−→ X30 +W31 + C0

X31 + gateL[11]
k−→ gateH[11] + strandB[11]

gateH[11] + strandB[11]
qmax−→ X31 + gateL[11]

W30 + gateH[11]
qmax−→ strandO[11]

strandO[11] + gateT [11]
qmax−→ X31 +W30 + C0

X31 + gateL[12]
k−→ gateH[12] + strandB[12]

gateH[12] + strandB[12]
qmax−→ X31 + gateL[12]

W31 + gateH[12]
qmax−→ strandO[12]

strandO[12] + gateT [12]
qmax−→ X31 +W31 + C1

X40 + gateL[13]
k−→ gateH[13] + strandB[13]

gateH[13] + strandB[13]
qmax−→ X40 + gateL[13]

W40 + gateH[13]
qmax−→ strandO[13]

strandO[13] + gateT [13]
qmax−→ X40 +W40 + C1

X40 + gateL[14]
k−→ gateH[14] + strandB[14]

gateH[14] + strandB[14]
qmax−→ X40 + gateL[14]

W41 + gateH[14]
qmax−→ strandO[14]

strandO[14] + gateT [14]
qmax−→ X40 +W41 + C0

159

X41 + gateL[15]
k−→ gateH[15] + strandB[15]

gateH[15] + strandB[15]
qmax−→ X41 + gateL[15]

W40 + gateH[15]
qmax−→ strandO[15]

strandO[15] + gateT [15]
qmax−→ X41 +W40 + C0

X41 + gateL[16]
k−→ gateH[16] + strandB[16]

gateH[16] + strandB[16]
qmax−→ X41 + gateL[16]

W41 + gateH[16]
qmax−→ strandO[16]

strandO[16] + gateT [16]
qmax−→ X41 +W41 + C1

X50 + gateL[17]
k−→ gateH[17] + strandB[17]

gateH[17] + strandB[17]
qmax−→ X50 + gateL[17]

W50 + gateH[17]
qmax−→ strandO[17]

strandO[17] + gateT [17]
qmax−→ X50 +W50 + C1

X50 + gateL[18]
k−→ gateH[18] + strandB[18]

gateH[18] + strandB[18]
qmax−→ X50 + gateL[18]

W51 + gateH[18]
qmax−→ strandO[18]

strandO[18] + gateT [18]
qmax−→ X50 +W51 + C0

X51 + gateL[19]
k−→ gateH[19] + strandB[19]

gateH[19] + strandB[19]
qmax−→ X51 + gateL[19]

W50 + gateH[19]
qmax−→ strandO[19]

strandO[19] + gateT [19]
qmax−→ X51 +W50 + C0

X51 + gateL[20]
k−→ gateH[20] + strandB[20]

gateH[20] + strandB[20]
qmax−→ X51 + gateL[20]

W51 + gateH[20]
qmax−→ strandO[20]

strandO[20] + gateT [20]
qmax−→ X51 +W51 + C1

160

X60 + gateL[21]
k−→ gateH[21] + strandB[21]

gateH[21] + strandB[21]
qmax−→ X60 + gateL[21]

W60 + gateH[21]
qmax−→ strandO[21]

strandO[21] + gateT [21]
qmax−→ X60 +W60 + C1

X60 + gateL[22]
k−→ gateH[22] + strandB[22]

gateH[22] + strandB[22]
qmax−→ X60 + gateL[22]

W61 + gateH[22]
qmax−→ strandO[22]

strandO[22] + gateT [22]
qmax−→ X60 +W61 + C0

X61 + gateL[23]
k−→ gateH[23] + strandB[23]

gateH[23] + strandB[23]
qmax−→ X61 + gateL[23]

W60 + gateH[23]
qmax−→ strandO[23]

strandO[23] + gateT [23]
qmax−→ X61 +W60 + C0

X61 + gateL[24]
k−→ gateH[24] + strandB[24]

gateH[24] + strandB[24]
qmax−→ X61 + gateL[24]

W61 + gateH[24]
qmax−→ strandO[24]

strandO[24] + gateT [24]
qmax−→ X61 +W61 + C1

X70 + gateL[25]
k−→ gateH[25] + strandB[25]

gateH[25] + strandB[25]
qmax−→ X70 + gateL[25]

W70 + gateH[25]
qmax−→ strandO[25]

strandO[25] + gateT [25]
qmax−→ X70 +W70 + C1

X70 + gateL[26]
k−→ gateH[26] + strandB[26]

gateH[26] + strandB[26]
qmax−→ X70 + gateL[26]

W71 + gateH[26]
qmax−→ strandO[26]

strandO[26] + gateT [26]
qmax−→ X70 +W71 + C0

161

X71 + gateL[27]
k−→ gateH[27] + strandB[27]

gateH[27] + strandB[27]
qmax−→ X71 + gateL[27]

W70 + gateH[27]
qmax−→ strandO[27]

strandO[27] + gateT [27]
qmax−→ X71 +W70 + C0

X71 + gateL[28]
k−→ gateH[28] + strandB[28]

gateH[28] + strandB[28]
qmax−→ X71 + gateL[28]

W71 + gateH[28]
qmax−→ strandO[28]

strandO[28] + gateT [28]
qmax−→ X71 +W71 + C1

X80 + gateL[29]
k−→ gateH[29] + strandB[29]

gateH[29] + strandB[29]
qmax−→ X80 + gateL[29]

W80 + gateH[29]
qmax−→ strandO[29]

strandO[29] + gateT [29]
qmax−→ X80 +W80 + C1

X80 + gateL[30]
k−→ gateH[30] + strandB[30]

gateH[30] + strandB[30]
qmax−→ X80 + gateL[30]

W81 + gateH[30]
qmax−→ strandO[30]

strandO[30] + gateT [30]
qmax−→ X80 +W81 + C0

X81 + gateL[31]
k−→ gateH[31] + strandB[31]

gateH[31] + strandB[31]
qmax−→ X81 + gateL[31]

W80 + gateH[31]
qmax−→ strandO[31]

strandO[31] + gateT [31]
qmax−→ X81 +W80 + C0

X81 + gateL[32]
k−→ gateH[32] + strandB[32]

gateH[32] + strandB[32]
qmax−→ X81 + gateL[32]

W81 + gateH[32]
qmax−→ strandO[32]

strandO[32] + gateT [32]
qmax−→ X81 +W81 + C1

162

X90 + gateL[33]
k−→ gateH[33] + strandB[33]

gateH[33] + strandB[33]
qmax−→ X90 + gateL[33]

W90 + gateH[33]
qmax−→ strandO[33]

strandO[33] + gateT [33]
qmax−→ X90 +W90 + C1

X90 + gateL[34]
k−→ gateH[34] + strandB[34]

gateH[34] + strandB[34]
qmax−→ X90 + gateL[34]

W91 + gateH[34]
qmax−→ strandO[34]

strandO[34] + gateT [34]
qmax−→ X90 +W91 + C0

X91 + gateL[35]
k−→ gateH[35] + strandB[35]

gateH[35] + strandB[35]
qmax−→ X91 + gateL[35]

W90 + gateH[35]
qmax−→ strandO[35]

strandO[35] + gateT [35]
qmax−→ X91 +W90 + C0

X91 + gateL[36]
k−→ gateH[36] + strandB[36]

gateH[36] + strandB[36]
qmax−→ X91 + gateL[36]

W91 + gateH[36]
qmax−→ strandO[36]

strandO[36] + gateT [36]
qmax−→ X91 +W91 + C1

X100 + gateL[37]
k−→ gateH[37] + strandB[37]

gateH[37] + strandB[37]
qmax−→ X100 + gateL[37]

W100 + gateH[37]
qmax−→ strandO[37]

strandO[37] + gateT [37]
qmax−→ X100 +W100 + C1

X100 + gateL[38]
k−→ gateH[38] + strandB[38]

gateH[38] + strandB[38]
qmax−→ X100 + gateL[38]

W101 + gateH[38]
qmax−→ strandO[38]

strandO[38] + gateT [38]
qmax−→ X100 +W101 + C0

163

X101 + gateL[39]
k−→ gateH[39] + strandB[39]

gateH[39] + strandB[39]
qmax−→ X101 + gateL[39]

W100 + gateH[39]
qmax−→ strandO[39]

strandO[39] + gateT [39]
qmax−→ X101 +W100 + C0

X101 + gateL[40]
k−→ gateH[40] + strandB[40]

gateH[40] + strandB[40]
qmax−→ X101 + gateL[40]

W101 + gateH[40]
qmax−→ strandO[40]

strandO[40] + gateT [40]
qmax−→ X101 +W101 + C1

X110 + gateL[41]
k−→ gateH[41] + strandB[41]

gateH[41] + strandB[41]
qmax−→ X110 + gateL[41]

W110 + gateH[41]
qmax−→ strandO[41]

strandO[41] + gateT [41]
qmax−→ X110 +W110 + C1

X110 + gateL[42]
k−→ gateH[42] + strandB[42]

gateH[42] + strandB[42]
qmax−→ X110 + gateL[42]

W111 + gateH[42]
qmax−→ strandO[42]

strandO[42] + gateT [42]
qmax−→ X110 +W111 + C0

X111 + gateL[43]
k−→ gateH[43] + strandB[43]

gateH[43] + strandB[43]
qmax−→ X111 + gateL[43]

W110 + gateH[43]
qmax−→ strandO[43]

strandO[43] + gateT [43]
qmax−→ X111 +W110 + C0

X111 + gateL[44]
k−→ gateH[44] + strandB[44]

gateH[44] + strandB[44]
qmax−→ X111 + gateL[44]

W111 + gateH[44]
qmax−→ strandO[44]

strandO[44] + gateT [44]
qmax−→ X111 +W111 + C1

164

X120 + gateL[45]
k−→ gateH[45] + strandB[45]

gateH[45] + strandB[45]
qmax−→ X120 + gateL[45]

W120 + gateH[45]
qmax−→ strandO[45]

strandO[45] + gateT [45]
qmax−→ X120 +W120 + C1

X120 + gateL[46]
k−→ gateH[46] + strandB[46]

gateH[46] + strandB[46]
qmax−→ X120 + gateL[46]

W121 + gateH[46]
qmax−→ strandO[46]

strandO[46] + gateT [46]
qmax−→ X120 +W121 + C0

X121 + gateL[47]
k−→ gateH[47] + strandB[47]

gateH[47] + strandB[47]
qmax−→ X121 + gateL[47]

W120 + gateH[47]
qmax−→ strandO[47]

strandO[47] + gateT [47]
qmax−→ X121 +W120 + C0

X121 + gateL[48]
k−→ gateH[48] + strandB[48]

gateH[48] + strandB[48]
qmax−→ X121 + gateL[48]

W121 + gateH[48]
qmax−→ strandO[48]

strandO[48] + gateT [48]
qmax−→ X121 +W121 + C1

X130 + gateL[49]
k−→ gateH[49] + strandB[49]

gateH[49] + strandB[49]
qmax−→ X130 + gateL[49]

W130 + gateH[49]
qmax−→ strandO[49]

strandO[49] + gateT [49]
qmax−→ X130 +W130 + C1

X130 + gateL[50]
k−→ gateH[50] + strandB[50]

gateH[50] + strandB[50]
qmax−→ X130 + gateL[50]

W131 + gateH[50]
qmax−→ strandO[50]

strandO[50] + gateT [50]
qmax−→ X130 +W131 + C0

165

X131 + gateL[51]
k−→ gateH[51] + strandB[51]

gateH[51] + strandB[51]
qmax−→ X131 + gateL[51]

W130 + gateH[51]
qmax−→ strandO[51]

strandO[51] + gateT [51]
qmax−→ X131 +W130 + C0

X131 + gateL[52]
k−→ gateH[52] + strandB[52]

gateH[52] + strandB[52]
qmax−→ X131 + gateL[52]

W131 + gateH[52]
qmax−→ strandO[52]

strandO[52] + gateT [52]
qmax−→ X131 +W131 + C1

X140 + gateL[53]
k−→ gateH[53] + strandB[53]

gateH[53] + strandB[53]
qmax−→ X140 + gateL[53]

W140 + gateH[53]
qmax−→ strandO[53]

strandO[53] + gateT [53]
qmax−→ X140 +W140 + C1

X140 + gateL[54]
k−→ gateH[54] + strandB[54]

gateH[54] + strandB[54]
qmax−→ X140 + gateL[54]

W141 + gateH[54]
qmax−→ strandO[54]

strandO[54] + gateT [54]
qmax−→ X140 +W141 + C0

X141 + gateL[55]
k−→ gateH[55] + strandB[55]

gateH[55] + strandB[55]
qmax−→ X141 + gateL[55]

W140 + gateH[55]
qmax−→ strandO[55]

strandO[55] + gateT [55]
qmax−→ X141 +W140 + C0

X141 + gateL[56]
k−→ gateH[56] + strandB[56]

gateH[56] + strandB[56]
qmax−→ X141 + gateL[56]

W141 + gateH[56]
qmax−→ strandO[56]

strandO[56] + gateT [56]
qmax−→ X141 +W141 + C1

166

X150 + gateL[57]
k−→ gateH[57] + strandB[57]

gateH[57] + strandB[57]
qmax−→ X150 + gateL[57]

W150 + gateH[57]
qmax−→ strandO[57]

strandO[57] + gateT [57]
qmax−→ X150 +W150 + C1

X150 + gateL[58]
k−→ gateH[58] + strandB[58]

gateH[58] + strandB[58]
qmax−→ X150 + gateL[58]

W151 + gateH[58]
qmax−→ strandO[58]

strandO[58] + gateT [58]
qmax−→ X150 +W151 + C0

X151 + gateL[59]
k−→ gateH[59] + strandB[59]

gateH[59] + strandB[59]
qmax−→ X151 + gateL[59]

W150 + gateH[59]
qmax−→ strandO[59]

strandO[59] + gateT [59]
qmax−→ X151 +W150 + C0

X151 + gateL[60]
k−→ gateH[60] + strandB[60]

gateH[60] + strandB[60]
qmax−→ X151 + gateL[60]

W151 + gateH[60]
qmax−→ strandO[60]

strandO[60] + gateT [60]
qmax−→ X151 +W151 + C1

X160 + gateL[61]
k−→ gateH[61] + strandB[61]

gateH[61] + strandB[61]
qmax−→ X160 + gateL[61]

W160 + gateH[61]
qmax−→ strandO[61]

strandO[61] + gateT [61]
qmax−→ X160 +W160 + C1

X160 + gateL[62]
k−→ gateH[62] + strandB[62]

gateH[62] + strandB[62]
qmax−→ X160 + gateL[62]

W161 + gateH[62]
qmax−→ strandO[62]

strandO[62] + gateT [62]
qmax−→ X160 +W161 + C0

167

X161 + gateL[63]
k−→ gateH[63] + strandB[63]

gateH[63] + strandB[63]
qmax−→ X161 + gateL[63]

W160 + gateH[63]
qmax−→ strandO[63]

strandO[63] + gateT [63]
qmax−→ X161 +W160 + C0

X161 + gateL[64]
k−→ gateH[64] + strandB[64]

gateH[64] + strandB[64]
qmax−→ X161 + gateL[64]

W161 + gateH[64]
qmax−→ strandO[64]

strandO[64] + gateT [64]
qmax−→ X161 +W161 + C1

X170 + gateL[65]
k−→ gateH[65] + strandB[65]

gateH[65] + strandB[65]
qmax−→ X170 + gateL[65]

W170 + gateH[65]
qmax−→ strandO[65]

strandO[65] + gateT [65]
qmax−→ X170 +W170 + C1

X170 + gateL[66]
k−→ gateH[66] + strandB[66]

gateH[66] + strandB[66]
qmax−→ X170 + gateL[66]

W171 + gateH[66]
qmax−→ strandO[66]

strandO[66] + gateT [66]
qmax−→ X170 +W171 + C0

X171 + gateL[67]
k−→ gateH[67] + strandB[67]

gateH[67] + strandB[67]
qmax−→ X171 + gateL[67]

W170 + gateH[67]
qmax−→ strandO[67]

strandO[67] + gateT [67]
qmax−→ X171 +W170 + C0

X171 + gateL[68]
k−→ gateH[68] + strandB[68]

gateH[68] + strandB[68]
qmax−→ X171 + gateL[68]

W171 + gateH[68]
qmax−→ strandO[68]

strandO[68] + gateT [68]
qmax−→ X171 +W171 + C1

168

X180 + gateL[69]
k−→ gateH[69] + strandB[69]

gateH[69] + strandB[69]
qmax−→ X180 + gateL[69]

W180 + gateH[69]
qmax−→ strandO[69]

strandO[69] + gateT [69]
qmax−→ X180 +W180 + C1

X180 + gateL[70]
k−→ gateH[70] + strandB[70]

gateH[70] + strandB[70]
qmax−→ X180 + gateL[70]

W181 + gateH[70]
qmax−→ strandO[70]

strandO[70] + gateT [70]
qmax−→ X180 +W181 + C0

X181 + gateL[71]
k−→ gateH[71] + strandB[71]

gateH[71] + strandB[71]
qmax−→ X181 + gateL[71]

W180 + gateH[71]
qmax−→ strandO[71]

strandO[71] + gateT [71]
qmax−→ X181 +W180 + C0

X181 + gateL[72]
k−→ gateH[72] + strandB[72]

gateH[72] + strandB[72]
qmax−→ X181 + gateL[72]

W181 + gateH[72]
qmax−→ strandO[72]

strandO[72] + gateT [72]
qmax−→ X181 +W181 + C1

X190 + gateL[73]
k−→ gateH[73] + strandB[73]

gateH[73] + strandB[73]
qmax−→ X190 + gateL[73]

W190 + gateH[73]
qmax−→ strandO[73]

strandO[73] + gateT [73]
qmax−→ X190 +W190 + C1

X190 + gateL[74]
k−→ gateH[74] + strandB[74]

gateH[74] + strandB[74]
qmax−→ X190 + gateL[74]

W191 + gateH[74]
qmax−→ strandO[74]

strandO[74] + gateT [74]
qmax−→ X190 +W191 + C0

169

X191 + gateL[75]
k−→ gateH[75] + strandB[75]

gateH[75] + strandB[75]
qmax−→ X191 + gateL[75]

W190 + gateH[75]
qmax−→ strandO[75]

strandO[75] + gateT [75]
qmax−→ X191 +W190 + C0

X191 + gateL[76]
k−→ gateH[76] + strandB[76]

gateH[76] + strandB[76]
qmax−→ X191 + gateL[76]

W191 + gateH[76]
qmax−→ strandO[76]

strandO[76] + gateT [76]
qmax−→ X191 +W191 + C1

X200 + gateL[77]
k−→ gateH[77] + strandB[77]

gateH[77] + strandB[77]
qmax−→ X200 + gateL[77]

W200 + gateH[77]
qmax−→ strandO[77]

strandO[77] + gateT [77]
qmax−→ X200 +W200 + C1

X200 + gateL[78]
k−→ gateH[78] + strandB[78]

gateH[78] + strandB[78]
qmax−→ X200 + gateL[78]

W201 + gateH[78]
qmax−→ strandO[78]

strandO[78] + gateT [78]
qmax−→ X200 +W201 + C0

X201 + gateL[79]
k−→ gateH[79] + strandB[79]

gateH[79] + strandB[79]
qmax−→ X201 + gateL[79]

W200 + gateH[79]
qmax−→ strandO[79]

strandO[79] + gateT [79]
qmax−→ X201 +W200 + C0

X201 + gateL[80]
k−→ gateH[80] + strandB[80]

gateH[80] + strandB[80]
qmax−→ X201 + gateL[80]

W201 + gateH[80]
qmax−→ strandO[80]

strandO[80] + gateT [80]
qmax−→ X201 +W201 + C1

170

X210 + gateL[81]
k−→ gateH[81] + strandB[81]

gateH[81] + strandB[81]
qmax−→ X210 + gateL[81]

W210 + gateH[81]
qmax−→ strandO[81]

strandO[81] + gateT [81]
qmax−→ X210 +W210 + C1

X210 + gateL[82]
k−→ gateH[82] + strandB[82]

gateH[82] + strandB[82]
qmax−→ X210 + gateL[82]

W211 + gateH[82]
qmax−→ strandO[82]

strandO[82] + gateT [82]
qmax−→ X210 +W211 + C0

X211 + gateL[83]
k−→ gateH[83] + strandB[83]

gateH[83] + strandB[83]
qmax−→ X211 + gateL[83]

W210 + gateH[83]
qmax−→ strandO[83]

strandO[83] + gateT [83]
qmax−→ X211 +W210 + C0

X211 + gateL[84]
k−→ gateH[84] + strandB[84]

gateH[84] + strandB[84]
qmax−→ X211 + gateL[84]

W211 + gateH[84]
qmax−→ strandO[84]

strandO[84] + gateT [84]
qmax−→ X211 +W211 + C1

X220 + gateL[85]
k−→ gateH[85] + strandB[85]

gateH[85] + strandB[85]
qmax−→ X220 + gateL[85]

W220 + gateH[85]
qmax−→ strandO[85]

strandO[85] + gateT [85]
qmax−→ X220 +W220 + C1

X220 + gateL[86]
k−→ gateH[86] + strandB[86]

gateH[86] + strandB[86]
qmax−→ X220 + gateL[86]

W221 + gateH[86]
qmax−→ strandO[86]

strandO[86] + gateT [86]
qmax−→ X220 +W221 + C0

171

X221 + gateL[87]
k−→ gateH[87] + strandB[87]

gateH[87] + strandB[87]
qmax−→ X221 + gateL[87]

W220 + gateH[87]
qmax−→ strandO[87]

strandO[87] + gateT [87]
qmax−→ X221 +W220 + C0

X221 + gateL[88]
k−→ gateH[88] + strandB[88]

gateH[88] + strandB[88]
qmax−→ X221 + gateL[88]

W221 + gateH[88]
qmax−→ strandO[88]

strandO[88] + gateT [88]
qmax−→ X221 +W221 + C1

X230 + gateL[89]
k−→ gateH[89] + strandB[89]

gateH[89] + strandB[89]
qmax−→ X230 + gateL[89]

W230 + gateH[89]
qmax−→ strandO[89]

strandO[89] + gateT [89]
qmax−→ X230 +W230 + C1

X230 + gateL[90]
k−→ gateH[90] + strandB[90]

gateH[90] + strandB[90]
qmax−→ X230 + gateL[90]

W231 + gateH[90]
qmax−→ strandO[90]

strandO[90] + gateT [90]
qmax−→ X230 +W231 + C0

X231 + gateL[91]
k−→ gateH[91] + strandB[91]

gateH[91] + strandB[91]
qmax−→ X231 + gateL[91]

W230 + gateH[91]
qmax−→ strandO[91]

strandO[91] + gateT [91]
qmax−→ X231 +W230 + C0

X231 + gateL[92]
k−→ gateH[92] + strandB[92]

gateH[92] + strandB[92]
qmax−→ X231 + gateL[92]

W231 + gateH[92]
qmax−→ strandO[92]

strandO[92] + gateT [92]
qmax−→ X231 +W231 + C1

172

X240 + gateL[93]
k−→ gateH[93] + strandB[93]

gateH[93] + strandB[93]
qmax−→ X240 + gateL[93]

W240 + gateH[93]
qmax−→ strandO[93]

strandO[93] + gateT [93]
qmax−→ X240 +W240 + C1

X240 + gateL[94]
k−→ gateH[94] + strandB[94]

gateH[94] + strandB[94]
qmax−→ X240 + gateL[94]

W241 + gateH[94]
qmax−→ strandO[94]

strandO[94] + gateT [94]
qmax−→ X240 +W241 + C0

X241 + gateL[95]
k−→ gateH[95] + strandB[95]

gateH[95] + strandB[95]
qmax−→ X241 + gateL[95]

W240 + gateH[95]
qmax−→ strandO[95]

strandO[95] + gateT [95]
qmax−→ X241 +W240 + C0

X241 + gateL[96]
k−→ gateH[96] + strandB[96]

gateH[96] + strandB[96]
qmax−→ X241 + gateL[96]

W241 + gateH[96]
qmax−→ strandO[96]

strandO[96] + gateT [96]
qmax−→ X241 +W241 + C1

X250 + gateL[97]
k−→ gateH[97] + strandB[97]

gateH[97] + strandB[97]
qmax−→ X250 + gateL[97]

W250 + gateH[97]
qmax−→ strandO[97]

strandO[97] + gateT [97]
qmax−→ X250 +W250 + C1

X250 + gateL[98]
k−→ gateH[98] + strandB[98]

gateH[98] + strandB[98]
qmax−→ X250 + gateL[98]

W251 + gateH[98]
qmax−→ strandO[98]

strandO[98] + gateT [98]
qmax−→ X250 +W251 + C0

173

X251 + gateL[99]
k−→ gateH[99] + strandB[99]

gateH[99] + strandB[99]
qmax−→ X251 + gateL[99]

W250 + gateH[99]
qmax−→ strandO[99]

strandO[99] + gateT [99]
qmax−→ X251 +W250 + C0

X251 + gateL[100]
k−→ gateH[100] + strandB[100]

gateH[100] + strandB[100]
qmax−→ X251 + gateL[100]

W251 + gateH[100]
qmax−→ strandO[100]

strandO[100] + gateT [100]
qmax−→ X251 +W251 + C1

X260 + gateL[101]
k−→ gateH[101] + strandB[101]

gateH[101] + strandB[101]
qmax−→ X260 + gateL[101]

W260 + gateH[101]
qmax−→ strandO[101]

strandO[101] + gateT [101]
qmax−→ X260 +W260 + C1

X260 + gateL[102]
k−→ gateH[102] + strandB[102]

gateH[102] + strandB[102]
qmax−→ X260 + gateL[102]

W261 + gateH[102]
qmax−→ strandO[102]

strandO[102] + gateT [102]
qmax−→ X260 +W261 + C0

X261 + gateL[103]
k−→ gateH[103] + strandB[103]

gateH[103] + strandB[103]
qmax−→ X261 + gateL[103]

W260 + gateH[103]
qmax−→ strandO[103]

strandO[103] + gateT [103]
qmax−→ X261 +W260 + C0

X261 + gateL[104]
k−→ gateH[104] + strandB[104]

gateH[104] + strandB[104]
qmax−→ X261 + gateL[104]

W261 + gateH[104]
qmax−→ strandO[104]

strandO[104] + gateT [104]
qmax−→ X261 +W261 + C1

174

X270 + gateL[105]
k−→ gateH[105] + strandB[105]

gateH[105] + strandB[105]
qmax−→ X270 + gateL[105]

W270 + gateH[105]
qmax−→ strandO[105]

strandO[105] + gateT [105]
qmax−→ X270 +W270 + C1

X270 + gateL[106]
k−→ gateH[106] + strandB[106]

gateH[106] + strandB[106]
qmax−→ X270 + gateL[106]

W271 + gateH[106]
qmax−→ strandO[106]

strandO[106] + gateT [106]
qmax−→ X270 +W271 + C0

X271 + gateL[107]
k−→ gateH[107] + strandB[107]

gateH[107] + strandB[107]
qmax−→ X271 + gateL[107]

W270 + gateH[107]
qmax−→ strandO[107]

strandO[107] + gateT [107]
qmax−→ X271 +W270 + C0

X271 + gateL[108]
k−→ gateH[108] + strandB[108]

gateH[108] + strandB[108]
qmax−→ X271 + gateL[108]

W271 + gateH[108]
qmax−→ strandO[108]

strandO[108] + gateT [108]
qmax−→ X271 +W271 + C1

X280 + gateL[109]
k−→ gateH[109] + strandB[109]

gateH[109] + strandB[109]
qmax−→ X280 + gateL[109]

W280 + gateH[109]
qmax−→ strandO[109]

strandO[109] + gateT [109]
qmax−→ X280 +W280 + C1

X280 + gateL[110]
k−→ gateH[110] + strandB[110]

gateH[110] + strandB[110]
qmax−→ X280 + gateL[110]

W281 + gateH[110]
qmax−→ strandO[110]

strandO[110] + gateT [110]
qmax−→ X280 +W281 + C0

175

X281 + gateL[111]
k−→ gateH[111] + strandB[111]

gateH[111] + strandB[111]
qmax−→ X281 + gateL[111]

W280 + gateH[111]
qmax−→ strandO[111]

strandO[111] + gateT [111]
qmax−→ X281 +W280 + C0

X281 + gateL[112]
k−→ gateH[112] + strandB[112]

gateH[112] + strandB[112]
qmax−→ X281 + gateL[112]

W281 + gateH[112]
qmax−→ strandO[112]

strandO[112] + gateT [112]
qmax−→ X281 +W281 + C1

X290 + gateL[113]
k−→ gateH[113] + strandB[113]

gateH[113] + strandB[113]
qmax−→ X290 + gateL[113]

W290 + gateH[113]
qmax−→ strandO[113]

strandO[113] + gateT [113]
qmax−→ X290 +W290 + C1

X290 + gateL[114]
k−→ gateH[114] + strandB[114]

gateH[114] + strandB[114]
qmax−→ X290 + gateL[114]

W291 + gateH[114]
qmax−→ strandO[114]

strandO[114] + gateT [114]
qmax−→ X290 +W291 + C0

X291 + gateL[115]
k−→ gateH[115] + strandB[115]

gateH[115] + strandB[115]
qmax−→ X291 + gateL[115]

W290 + gateH[115]
qmax−→ strandO[115]

strandO[115] + gateT [115]
qmax−→ X291 +W290 + C0

X291 + gateL[116]
k−→ gateH[116] + strandB[116]

gateH[116] + strandB[116]
qmax−→ X291 + gateL[116]

W291 + gateH[116]
qmax−→ strandO[116]

strandO[116] + gateT [116]
qmax−→ X291 +W291 + C1

176

X300 + gateL[117]
k−→ gateH[117] + strandB[117]

gateH[117] + strandB[117]
qmax−→ X300 + gateL[117]

W300 + gateH[117]
qmax−→ strandO[117]

strandO[117] + gateT [117]
qmax−→ X300 +W300 + C1

X300 + gateL[118]
k−→ gateH[118] + strandB[118]

gateH[118] + strandB[118]
qmax−→ X300 + gateL[118]

W301 + gateH[118]
qmax−→ strandO[118]

strandO[118] + gateT [118]
qmax−→ X300 +W301 + C0

X301 + gateL[119]
k−→ gateH[119] + strandB[119]

gateH[119] + strandB[119]
qmax−→ X301 + gateL[119]

W300 + gateH[119]
qmax−→ strandO[119]

strandO[119] + gateT [119]
qmax−→ X301 +W300 + C0

X301 + gateL[120]
k−→ gateH[120] + strandB[120]

gateH[120] + strandB[120]
qmax−→ X301 + gateL[120]

W301 + gateH[120]
qmax−→ strandO[120]

strandO[120] + gateT [120]
qmax−→ X301 +W301 + C1

X310 + gateL[121]
k−→ gateH[121] + strandB[121]

gateH[121] + strandB[121]
qmax−→ X310 + gateL[121]

W310 + gateH[121]
qmax−→ strandO[121]

strandO[121] + gateT [121]
qmax−→ X310 +W310 + C1

X310 + gateL[122]
k−→ gateH[122] + strandB[122]

gateH[122] + strandB[122]
qmax−→ X310 + gateL[122]

W311 + gateH[122]
qmax−→ strandO[122]

strandO[122] + gateT [122]
qmax−→ X310 +W311 + C0

177

X311 + gateL[123]
k−→ gateH[123] + strandB[123]

gateH[123] + strandB[123]
qmax−→ X311 + gateL[123]

W310 + gateH[123]
qmax−→ strandO[123]

strandO[123] + gateT [123]
qmax−→ X311 +W310 + C0

X311 + gateL[124]
k−→ gateH[124] + strandB[124]

gateH[124] + strandB[124]
qmax−→ X311 + gateL[124]

W311 + gateH[124]
qmax−→ strandO[124]

strandO[124] + gateT [124]
qmax−→ X311 +W311 + C1

X320 + gateL[125]
k−→ gateH[125] + strandB[125]

gateH[125] + strandB[125]
qmax−→ X320 + gateL[125]

W320 + gateH[125]
qmax−→ strandO[125]

strandO[125] + gateT [125]
qmax−→ X320 +W320 + C1

X320 + gateL[126]
k−→ gateH[126] + strandB[126]

gateH[126] + strandB[126]
qmax−→ X320 + gateL[126]

W321 + gateH[126]
qmax−→ strandO[126]

strandO[126] + gateT [126]
qmax−→ X320 +W321 + C0

X321 + gateL[127]
k−→ gateH[127] + strandB[127]

gateH[127] + strandB[127]
qmax−→ X321 + gateL[127]

W320 + gateH[127]
qmax−→ strandO[127]

strandO[127] + gateT [127]
qmax−→ X321 +W320 + C0

X321 + gateL[128]
k−→ gateH[128] + strandB[128]

gateH[128] + strandB[128]
qmax−→ X321 + gateL[128]

W321 + gateH[128]
qmax−→ strandO[128]

strandO[128] + gateT [128]
qmax−→ X321 +W321 + C1

178

X330 + gateL[129]
k−→ gateH[129] + strandB[129]

gateH[129] + strandB[129]
qmax−→ X330 + gateL[129]

W330 + gateH[129]
qmax−→ strandO[129]

strandO[129] + gateT [129]
qmax−→ X330 +W330 + C1

X330 + gateL[130]
k−→ gateH[130] + strandB[130]

gateH[130] + strandB[130]
qmax−→ X330 + gateL[130]

W331 + gateH[130]
qmax−→ strandO[130]

strandO[130] + gateT [130]
qmax−→ X330 +W331 + C0

X331 + gateL[131]
k−→ gateH[131] + strandB[131]

gateH[131] + strandB[131]
qmax−→ X331 + gateL[131]

W330 + gateH[131]
qmax−→ strandO[131]

strandO[131] + gateT [131]
qmax−→ X331 +W330 + C0

X331 + gateL[132]
k−→ gateH[132] + strandB[132]

gateH[132] + strandB[132]
qmax−→ X331 + gateL[132]

W331 + gateH[132]
qmax−→ strandO[132]

strandO[132] + gateT [132]
qmax−→ X331 +W331 + C1

C0 + gateG[133]
k2−→ strandO[133]

strandO[133] + gateT [133]
qmax−→ ∅

C1 + gateG[134]
k2−→ strandO[134]

strandO[134] + gateT [134]
qmax−→ ∅

C0 + gateL[135]
k−→ gateH[135] + strandB[135]

gateH[135] + strandB[135]
qmax−→ C0 + gateL[135]

C0 + gateH[135]
qmax−→ strandO[135]

strandO[135] + gateT [135]
qmax−→ C11 + C0 + C0

179

C0 + gateL[136]
k−→ gateH[136] + strandB[136]

gateH[136] + strandB[136]
qmax−→ C0 + gateL[136]

C1 + gateH[136]
qmax−→ strandO[136]

strandO[136] + gateT [136]
qmax−→ C10 + C0 + C1

C1 + gateL[137]
k−→ gateH[137] + strandB[137]

gateH[137] + strandB[137]
qmax−→ C1 + gateL[137]

C0 + gateH[137]
qmax−→ strandO[137]

strandO[137] + gateT [137]
qmax−→ C10 + C1 + C0

C1 + gateL[138]
k−→ gateH[138] + strandB[138]

gateH[138] + strandB[138]
qmax−→ C1 + gateL[138]

C1 + gateH[138]
qmax−→ strandO[138]

strandO[138] + gateT [138]
qmax−→ C11 + C1 + C1

C10 + gateG[139]
k2−→ strandO[139]

strandO[139] + gateT [139]
qmax−→ ∅

C11 + gateG[140]
k2−→ strandO[140]

strandO[140] + gateT [140]
qmax−→ ∅

A20 + gateL[141]
k−→ gateH[141] + strandB[141]

gateH[141] + strandB[141]
qmax−→ A20 + gateL[141]

C10 + gateH[141]
qmax−→ strandO[141]

strandO[141] + gateT [141]
qmax−→ C20 +A20 + C10

A20 + gateL[142]
k−→ gateH[142] + strandB[142]

gateH[142] + strandB[142]
qmax−→ A20 + gateL[142]

C11 + gateH[142]
qmax−→ strandO[142]

strandO[142] + gateT [142]
qmax−→ C21 +A20 + C11

180

A21 + gateL[143]
k−→ gateH[143] + strandB[143]

gateH[143] + strandB[143]
qmax−→ A21 + gateL[143]

C10 + gateH[143]
qmax−→ strandO[143]

strandO[143] + gateT [143]
qmax−→ C21 +A21 + C10

A21 + gateL[144]
k−→ gateH[144] + strandB[144]

gateH[144] + strandB[144]
qmax−→ A21 + gateL[144]

C11 + gateH[144]
qmax−→ strandO[144]

strandO[144] + gateT [144]
qmax−→ C20 +A21 + C11

C20 + gateG[145]
k2−→ strandO[145]

strandO[145] + gateT [145]
qmax−→ ∅

C21 + gateG[146]
k2−→ strandO[146]

strandO[146] + gateT [146]
qmax−→ ∅

A30 + gateL[147]
k−→ gateH[147] + strandB[147]

gateH[147] + strandB[147]
qmax−→ A30 + gateL[147]

C20 + gateH[147]
qmax−→ strandO[147]

strandO[147] + gateT [147]
qmax−→ C30 +A30 + C20

A30 + gateL[148]
k−→ gateH[148] + strandB[148]

gateH[148] + strandB[148]
qmax−→ A30 + gateL[148]

C21 + gateH[148]
qmax−→ strandO[148]

strandO[148] + gateT [148]
qmax−→ C31 +A30 + C21

A31 + gateL[149]
k−→ gateH[149] + strandB[149]

gateH[149] + strandB[149]
qmax−→ A31 + gateL[149]

B30 + gateH[149]
qmax−→ strandO[149]

strandO[149] + gateT [149]
qmax−→ C30 +A31 +B30

181

A31 + gateL[150]
k−→ gateH[150] + strandB[150]

gateH[150] + strandB[150]
qmax−→ A31 + gateL[150]

B31 + gateH[150]
qmax−→ strandO[150]

strandO[150] + gateT [150]
qmax−→ C31 +A31 +B31

C30 + gateG[151]
k2−→ strandO[151]

strandO[151] + gateT [151]
qmax−→ ∅

C31 + gateG[152]
k2−→ strandO[152]

strandO[152] + gateT [152]
qmax−→ ∅

C10 + gateL[153]
k−→ gateH[153] + strandB[153]

gateH[153] + strandB[153]
qmax−→ C10 + gateL[153]

C30 + gateH[153]
qmax−→ strandO[153]

strandO[153] + gateT [153]
qmax−→ C41 + C10 + C30

C10 + gateL[154]
k−→ gateH[154] + strandB[154]

gateH[154] + strandB[154]
qmax−→ C10 + gateL[154]

C31 + gateH[154]
qmax−→ strandO[154]

strandO[154] + gateT [154]
qmax−→ C40 + C10 + C31

C11 + gateL[155]
k−→ gateH[155] + strandB[155]

gateH[155] + strandB[155]
qmax−→ C11 + gateL[155]

C30 + gateH[155]
qmax−→ strandO[155]

strandO[155] + gateT [155]
qmax−→ C40 + C11 + C30

C11 + gateL[156]
k−→ gateH[156] + strandB[156]

gateH[156] + strandB[156]
qmax−→ C11 + gateL[156]

C31 + gateH[156]
qmax−→ strandO[156]

strandO[156] + gateT [156]
qmax−→ C41 + C11 + C31

C40 + gateG[157]
k2−→ strandO[157]

strandO[157] + gateT [157]
qmax−→ ∅

182

C41 + gateG[158]
k2−→ strandO[158]

strandO[158] + gateT [158]
qmax−→ ∅

A50 + gateL[159]
k−→ gateH[159] + strandB[159]

gateH[159] + strandB[159]
qmax−→ A50 + gateL[159]

C40 + gateH[159]
qmax−→ strandO[159]

strandO[159] + gateT [159]
qmax−→ C50 +A50 + C40

A50 + gateL[160]
k−→ gateH[160] + strandB[160]

gateH[160] + strandB[160]
qmax−→ A50 + gateL[160]

C41 + gateH[160]
qmax−→ strandO[160]

strandO[160] + gateT [160]
qmax−→ C51 +A50 + C41

A51 + gateL[161]
k−→ gateH[161] + strandB[161]

gateH[161] + strandB[161]
qmax−→ A51 + gateL[161]

B50 + gateH[161]
qmax−→ strandO[161]

strandO[161] + gateT [161]
qmax−→ C50 +A51 +B50

A51 + gateL[162]
k−→ gateH[162] + strandB[162]

gateH[162] + strandB[162]
qmax−→ A51 + gateL[162]

B51 + gateH[162]
qmax−→ strandO[162]

strandO[162] + gateT [162]
qmax−→ C51 +A51 +B51

C50 + gateG[163]
k2−→ strandO[163]

strandO[163] + gateT [163]
qmax−→ ∅

C51 + gateG[164]
k2−→ strandO[164]

strandO[164] + gateT [164]
qmax−→ ∅

C0 + gateL[165]
k−→ gateH[165] + strandB[165]

gateH[165] + strandB[165]
qmax−→ C0 + gateL[165]

C50 + gateH[165]
qmax−→ strandO[165]

strandO[165] + gateT [165]
qmax−→ C60 + C0 + C50

183

C0 + gateL[166]
k−→ gateH[166] + strandB[166]

gateH[166] + strandB[166]
qmax−→ C0 + gateL[166]

C51 + gateH[166]
qmax−→ strandO[166]

strandO[166] + gateT [166]
qmax−→ C61 + C0 + C51

C1 + gateL[167]
k−→ gateH[167] + strandB[167]

gateH[167] + strandB[167]
qmax−→ C1 + gateL[167]

C50 + gateH[167]
qmax−→ strandO[167]

strandO[167] + gateT [167]
qmax−→ C61 + C1 + C50

C1 + gateL[168]
k−→ gateH[168] + strandB[168]

gateH[168] + strandB[168]
qmax−→ C1 + gateL[168]

C51 + gateH[168]
qmax−→ strandO[168]

strandO[168] + gateT [168]
qmax−→ C60 + C1 + C51

C60 + gateG[169]
k2−→ strandO[169]

strandO[169] + gateT [169]
qmax−→ ∅

C61 + gateG[170]
k2−→ strandO[170]

strandO[170] + gateT [170]
qmax−→ ∅

C60 + gateG[171]
k2−→ strandO[171]

strandO[171] + gateT [171]
qmax−→ C60 + cp

C61 + gateG[172]
k2−→ strandO[172]

strandO[172] + gateT [172]
qmax−→ C61 + cp

cp+ gateG[173]
k2−→ strandO[173]

strandO[173] + gateT [173]
qmax−→ ∅

C61 + gateG[174]
k2−→ strandO[174]

strandO[174] + gateT [174]
qmax−→ C61 + c

184

cp+ gateL[175]
k−→ gateH[175] + strandB[175]

gateH[175] + strandB[175]
qmax−→ cp+ gateL[175]

c+ gateH[175]
qmax−→ strandO[175]

strandO[175] + gateT [175]
qmax−→ cp,

A20 + gateLS[A20]
k1−→ gateHS[A20] + strandBS[A20]

gateHS[A20] + strandBS[A20]
qmax−→ A20 + gateLS[A20]

A21 + gateLS[A21]
k1−→ gateHS[A21] + strandBS[A21]

gateHS[A21] + strandBS[A21]
qmax−→ A21 + gateLS[A21]

A30 + gateLS[A30]
k1−→ gateHS[A30] + strandBS[A30]

gateHS[A30] + strandBS[A30]
qmax−→ A30 + gateLS[A30]

A31 + gateLS[A31]
k1−→ gateHS[A31] + strandBS[A31]

gateHS[A31] + strandBS[A31]
qmax−→ A31 + gateLS[A31]

A50 + gateLS[A50]
k1−→ gateHS[A50] + strandBS[A50]

gateHS[A50] + strandBS[A50]
qmax−→ A50 + gateLS[A50]

A51 + gateLS[A51]
k1−→ gateHS[A51] + strandBS[A51]

gateHS[A51] + strandBS[A51]
qmax−→ A51 + gateLS[A51]

B30 + gateLS[B30]
qmax−→ gateHS[B30] + strandBS[B30]

gateHS[B30] + strandBS[B30]
qmax−→ B30 + gateLS[B30]

B31 + gateLS[B31]
qmax−→ gateHS[B31] + strandBS[B31]

gateHS[B31] + strandBS[B31]
qmax−→ B31 + gateLS[B31]

B50 + gateLS[B50]
qmax−→ gateHS[B50] + strandBS[B50]

gateHS[B50] + strandBS[B50]
qmax−→ B50 + gateLS[B50]

B51 + gateLS[B51]
qmax−→ gateHS[B51] + strandBS[B51]

gateHS[B51] + strandBS[B51]
qmax−→ B51 + gateLS[B51]

185

c+ gateLS[c]
qmax−→ gateHS[c] + strandBS[c]

gateHS[c] + strandBS[c]
qmax−→ c+ gateLS[c]

C10 + gateLS[C10]
k1−→ gateHS[C10] + strandBS[C10]

gateHS[C10] + strandBS[C10]
qmax−→ C10 + gateLS[C10]

C11 + gateLS[C11]
k1−→ gateHS[C11] + strandBS[C11]

gateHS[C11] + strandBS[C11]
qmax−→ C11 + gateLS[C11]

C20 + gateLS[C20]
qmax−→ gateHS[C20] + strandBS[C20]

gateHS[C20] + strandBS[C20]
qmax−→ C20 + gateLS[C20]

C21 + gateLS[C21]
qmax−→ gateHS[C21] + strandBS[C21]

gateHS[C21] + strandBS[C21]
qmax−→ C21 + gateLS[C21]

C30 + gateLS[C30]
qmax−→ gateHS[C30] + strandBS[C30]

gateHS[C30] + strandBS[C30]
qmax−→ C30 + gateLS[C30]

C31 + gateLS[C31]
qmax−→ gateHS[C31] + strandBS[C31]

gateHS[C31] + strandBS[C31]
qmax−→ C31 + gateLS[C31]

C40 + gateLS[C40]
qmax−→ gateHS[C40] + strandBS[C40]

gateHS[C40] + strandBS[C40]
qmax−→ C40 + gateLS[C40]

C41 + gateLS[C41]
qmax−→ gateHS[C41] + strandBS[C41]

gateHS[C41] + strandBS[C41]
qmax−→ C41 + gateLS[C41]

C50 + gateLS[C50]
qmax−→ gateHS[C50] + strandBS[C50]

gateHS[C50] + strandBS[C50]
qmax−→ C50 + gateLS[C50]

C51 + gateLS[C51]
qmax−→ gateHS[C51] + strandBS[C51]

gateHS[C51] + strandBS[C51]
qmax−→ C51 + gateLS[C51]

C60 + gateLS[C60]
qmax−→ gateHS[C60] + strandBS[C60]

gateHS[C60] + strandBS[C60]
qmax−→ C60 + gateLS[C60]

186

C61 + gateLS[C61]
qmax−→ gateHS[C61] + strandBS[C61]

gateHS[C61] + strandBS[C61]
qmax−→ C61 + gateLS[C61]

cp+ gateLS[cp]
k3−→ gateHS[cp] + strandBS[cp]

gateHS[cp] + strandBS[cp]
qmax−→ cp+ gateLS[cp]

∅ + gateLS[∅]
qmax−→ gateHS[∅] + strandBS[∅]

gateHS[∅] + strandBS[∅]
qmax−→ ∅ + gateLS[∅]

W10 + gateLS[W10]
qmax−→ gateHS[W10] + strandBS[W10]

gateHS[W10] + strandBS[W10]
qmax−→ W10 + gateLS[W10]

W100 + gateLS[W100]
qmax−→ gateHS[W100] + strandBS[W100]

gateHS[W100] + strandBS[W100]
qmax−→ W100 + gateLS[W100]

W101 + gateLS[W101]
qmax−→ gateHS[W101] + strandBS[W101]

gateHS[W101] + strandBS[W101]
qmax−→ W101 + gateLS[W101]

W11 + gateLS[W11]
qmax−→ gateHS[W11] + strandBS[W11]

gateHS[W11] + strandBS[W11]
qmax−→ W11 + gateLS[W11]

W110 + gateLS[W110]
qmax−→ gateHS[W110] + strandBS[W110]

gateHS[W110] + strandBS[W110]
qmax−→ W110 + gateLS[W110]

W111 + gateLS[W111]
qmax−→ gateHS[W111] + strandBS[W111]

gateHS[W111] + strandBS[W111]
qmax−→ W111 + gateLS[W111]

W120 + gateLS[W120]
qmax−→ gateHS[W120] + strandBS[W120]

gateHS[W120] + strandBS[W120]
qmax−→ W120 + gateLS[W120]

W121 + gateLS[W121]
qmax−→ gateHS[W121] + strandBS[W121]

gateHS[W121] + strandBS[W121]
qmax−→ W121 + gateLS[W121]

W130 + gateLS[W130]
qmax−→ gateHS[W130] + strandBS[W130]

gateHS[W130] + strandBS[W130]
qmax−→ W130 + gateLS[W130]

187

W131 + gateLS[W131]
qmax−→ gateHS[W131] + strandBS[W131]

gateHS[W131] + strandBS[W131]
qmax−→ W131 + gateLS[W131]

W140 + gateLS[W140]
qmax−→ gateHS[W140] + strandBS[W140]

gateHS[W140] + strandBS[W140]
qmax−→ W140 + gateLS[W140]

W141 + gateLS[W141]
qmax−→ gateHS[W141] + strandBS[W141]

gateHS[W141] + strandBS[W141]
qmax−→ W141 + gateLS[W141]

W150 + gateLS[W150]
qmax−→ gateHS[W150] + strandBS[W150]

gateHS[W150] + strandBS[W150]
qmax−→ W150 + gateLS[W150]

W151 + gateLS[W151]
qmax−→ gateHS[W151] + strandBS[W151]

gateHS[W151] + strandBS[W151]
qmax−→ W151 + gateLS[W151]

W160 + gateLS[W160]
qmax−→ gateHS[W160] + strandBS[W160]

gateHS[W160] + strandBS[W160]
qmax−→ W160 + gateLS[W160]

W161 + gateLS[W161]
qmax−→ gateHS[W161] + strandBS[W161]

gateHS[W161] + strandBS[W161]
qmax−→ W161 + gateLS[W161]

W170 + gateLS[W170]
qmax−→ gateHS[W170] + strandBS[W170]

gateHS[W170] + strandBS[W170]
qmax−→ W170 + gateLS[W170]

W171 + gateLS[W171]
qmax−→ gateHS[W171] + strandBS[W171]

gateHS[W171] + strandBS[W171]
qmax−→ W171 + gateLS[W171]

W180 + gateLS[W180]
qmax−→ gateHS[W180] + strandBS[W180]

gateHS[W180] + strandBS[W180]
qmax−→ W180 + gateLS[W180]

W181 + gateLS[W181]
qmax−→ gateHS[W181] + strandBS[W181]

gateHS[W181] + strandBS[W181]
qmax−→ W181 + gateLS[W181]

W190 + gateLS[W190]
qmax−→ gateHS[W190] + strandBS[W190]

gateHS[W190] + strandBS[W190]
qmax−→ W190 + gateLS[W190]

188

W191 + gateLS[W191]
qmax−→ gateHS[W191] + strandBS[W191]

gateHS[W191] + strandBS[W191]
qmax−→ W191 + gateLS[W191]

W20 + gateLS[W20]
qmax−→ gateHS[W20] + strandBS[W20]

gateHS[W20] + strandBS[W20]
qmax−→ W20 + gateLS[W20]

W200 + gateLS[W200]
qmax−→ gateHS[W200] + strandBS[W200]

gateHS[W200] + strandBS[W200]
qmax−→ W200 + gateLS[W200]

W201 + gateLS[W201]
qmax−→ gateHS[W201] + strandBS[W201]

gateHS[W201] + strandBS[W201]
qmax−→ W201 + gateLS[W201]

W21 + gateLS[W21]
qmax−→ gateHS[W21] + strandBS[W21]

gateHS[W21] + strandBS[W21]
qmax−→ W21 + gateLS[W21]

W210 + gateLS[W210]
qmax−→ gateHS[W210] + strandBS[W210]

gateHS[W210] + strandBS[W210]
qmax−→ W210 + gateLS[W210]

W211 + gateLS[W211]
qmax−→ gateHS[W211] + strandBS[W211]

gateHS[W211] + strandBS[W211]
qmax−→ W211 + gateLS[W211]

W220 + gateLS[W220]
qmax−→ gateHS[W220] + strandBS[W220]

gateHS[W220] + strandBS[W220]
qmax−→ W220 + gateLS[W220]

W221 + gateLS[W221]
qmax−→ gateHS[W221] + strandBS[W221]

gateHS[W221] + strandBS[W221]
qmax−→ W221 + gateLS[W221]

W230 + gateLS[W230]
qmax−→ gateHS[W230] + strandBS[W230]

gateHS[W230] + strandBS[W230]
qmax−→ W230 + gateLS[W230]

W231 + gateLS[W231]
qmax−→ gateHS[W231] + strandBS[W231]

gateHS[W231] + strandBS[W231]
qmax−→ W231 + gateLS[W231]

W240 + gateLS[W240]
qmax−→ gateHS[W240] + strandBS[W240]

gateHS[W240] + strandBS[W240]
qmax−→ W240 + gateLS[W240]

189

W241 + gateLS[W241]
qmax−→ gateHS[W241] + strandBS[W241]

gateHS[W241] + strandBS[W241]
qmax−→ W241 + gateLS[W241]

W250 + gateLS[W250]
qmax−→ gateHS[W250] + strandBS[W250]

gateHS[W250] + strandBS[W250]
qmax−→ W250 + gateLS[W250]

W251 + gateLS[W251]
qmax−→ gateHS[W251] + strandBS[W251]

gateHS[W251] + strandBS[W251]
qmax−→ W251 + gateLS[W251]

W260 + gateLS[W260]
qmax−→ gateHS[W260] + strandBS[W260]

gateHS[W260] + strandBS[W260]
qmax−→ W260 + gateLS[W260]

W261 + gateLS[W261]
qmax−→ gateHS[W261] + strandBS[W261]

gateHS[W261] + strandBS[W261]
qmax−→ W261 + gateLS[W261]

W270 + gateLS[W270]
qmax−→ gateHS[W270] + strandBS[W270]

gateHS[W270] + strandBS[W270]
qmax−→ W270 + gateLS[W270]

W271 + gateLS[W271]
qmax−→ gateHS[W271] + strandBS[W271]

gateHS[W271] + strandBS[W271]
qmax−→ W271 + gateLS[W271]

W280 + gateLS[W280]
qmax−→ gateHS[W280] + strandBS[W280]

gateHS[W280] + strandBS[W280]
qmax−→ W280 + gateLS[W280]

W281 + gateLS[W281]
qmax−→ gateHS[W281] + strandBS[W281]

gateHS[W281] + strandBS[W281]
qmax−→ W281 + gateLS[W281]

W290 + gateLS[W290]
qmax−→ gateHS[W290] + strandBS[W290]

gateHS[W290] + strandBS[W290]
qmax−→ W290 + gateLS[W290]

W291 + gateLS[W291]
qmax−→ gateHS[W291] + strandBS[W291]

gateHS[W291] + strandBS[W291]
qmax−→ W291 + gateLS[W291]

W30 + gateLS[W30]
qmax−→ gateHS[W30] + strandBS[W30]

gateHS[W30] + strandBS[W30]
qmax−→ W30 + gateLS[W30]

190

W300 + gateLS[W300]
qmax−→ gateHS[W300] + strandBS[W300]

gateHS[W300] + strandBS[W300]
qmax−→ W300 + gateLS[W300]

W301 + gateLS[W301]
qmax−→ gateHS[W301] + strandBS[W301]

gateHS[W301] + strandBS[W301]
qmax−→ W301 + gateLS[W301]

W31 + gateLS[W31]
qmax−→ gateHS[W31] + strandBS[W31]

gateHS[W31] + strandBS[W31]
qmax−→ W31 + gateLS[W31]

W310 + gateLS[W310]
qmax−→ gateHS[W310] + strandBS[W310]

gateHS[W310] + strandBS[W310]
qmax−→ W310 + gateLS[W310]

W311 + gateLS[W311]
qmax−→ gateHS[W311] + strandBS[W311]

gateHS[W311] + strandBS[W311]
qmax−→ W311 + gateLS[W311]

W320 + gateLS[W320]
qmax−→ gateHS[W320] + strandBS[W320]

gateHS[W320] + strandBS[W320]
qmax−→ W320 + gateLS[W320]

W321 + gateLS[W321]
qmax−→ gateHS[W321] + strandBS[W321]

gateHS[W321] + strandBS[W321]
qmax−→ W321 + gateLS[W321]

W330 + gateLS[W330]
qmax−→ gateHS[W330] + strandBS[W330]

gateHS[W330] + strandBS[W330]
qmax−→ W330 + gateLS[W330]

W331 + gateLS[W331]
qmax−→ gateHS[W331] + strandBS[W331]

gateHS[W331] + strandBS[W331]
qmax−→ W331 + gateLS[W331]

W40 + gateLS[W40]
qmax−→ gateHS[W40] + strandBS[W40]

gateHS[W40] + strandBS[W40]
qmax−→ W40 + gateLS[W40]

W41 + gateLS[W41]
qmax−→ gateHS[W41] + strandBS[W41]

gateHS[W41] + strandBS[W41]
qmax−→ W41 + gateLS[W41]

W50 + gateLS[W50]
qmax−→ gateHS[W50] + strandBS[W50]

gateHS[W50] + strandBS[W50]
qmax−→ W50 + gateLS[W50]

191

W51 + gateLS[W51]
qmax−→ gateHS[W51] + strandBS[W51]

gateHS[W51] + strandBS[W51]
qmax−→ W51 + gateLS[W51]

W60 + gateLS[W60]
qmax−→ gateHS[W60] + strandBS[W60]

gateHS[W60] + strandBS[W60]
qmax−→ W60 + gateLS[W60]

W61 + gateLS[W61]
qmax−→ gateHS[W61] + strandBS[W61]

gateHS[W61] + strandBS[W61]
qmax−→ W61 + gateLS[W61]

W70 + gateLS[W70]
qmax−→ gateHS[W70] + strandBS[W70]

gateHS[W70] + strandBS[W70]
qmax−→ W70 + gateLS[W70]

W71 + gateLS[W71]
qmax−→ gateHS[W71] + strandBS[W71]

gateHS[W71] + strandBS[W71]
qmax−→ W71 + gateLS[W71]

W80 + gateLS[W80]
qmax−→ gateHS[W80] + strandBS[W80]

gateHS[W80] + strandBS[W80]
qmax−→ W80 + gateLS[W80]

W81 + gateLS[W81]
qmax−→ gateHS[W81] + strandBS[W81]

gateHS[W81] + strandBS[W81]
qmax−→ W81 + gateLS[W81]

W90 + gateLS[W90]
qmax−→ gateHS[W90] + strandBS[W90]

gateHS[W90] + strandBS[W90]
qmax−→ W90 + gateLS[W90]

W91 + gateLS[W91]
qmax−→ gateHS[W91] + strandBS[W91]

gateHS[W91] + strandBS[W91]
qmax−→ W91 + gateLS[W91]

X10 + gateLS[X10]
k1−→ gateHS[X10] + strandBS[X10]

gateHS[X10] + strandBS[X10]
qmax−→ X10 + gateLS[X10]

X100 + gateLS[X100]
k1−→ gateHS[X100] + strandBS[X100]

gateHS[X100] + strandBS[X100]
qmax−→ X100 + gateLS[X100]

X101 + gateLS[X101]
k1−→ gateHS[X101] + strandBS[X101]

gateHS[X101] + strandBS[X101]
qmax−→ X101 + gateLS[X101]

192

X11 + gateLS[X11]
k1−→ gateHS[X11] + strandBS[X11]

gateHS[X11] + strandBS[X11]
qmax−→ X11 + gateLS[X11]

X110 + gateLS[X110]
k1−→ gateHS[X110] + strandBS[X110]

gateHS[X110] + strandBS[X110]
qmax−→ X110 + gateLS[X110]

X111 + gateLS[X111]
k1−→ gateHS[X111] + strandBS[X111]

gateHS[X111] + strandBS[X111]
qmax−→ X111 + gateLS[X111]

X120 + gateLS[X120]
k1−→ gateHS[X120] + strandBS[X120]

gateHS[X120] + strandBS[X120]
qmax−→ X120 + gateLS[X120]

X121 + gateLS[X121]
k1−→ gateHS[X121] + strandBS[X121]

gateHS[X121] + strandBS[X121]
qmax−→ X121 + gateLS[X121]

X130 + gateLS[X130]
k1−→ gateHS[X130] + strandBS[X130]

gateHS[X130] + strandBS[X130]
qmax−→ X130 + gateLS[X130]

X131 + gateLS[X131]
k1−→ gateHS[X131] + strandBS[X131]

gateHS[X131] + strandBS[X131]
qmax−→ X131 + gateLS[X131]

X140 + gateLS[X140]
k1−→ gateHS[X140] + strandBS[X140]

gateHS[X140] + strandBS[X140]
qmax−→ X140 + gateLS[X140]

X141 + gateLS[X141]
k1−→ gateHS[X141] + strandBS[X141]

gateHS[X141] + strandBS[X141]
qmax−→ X141 + gateLS[X141]

X150 + gateLS[X150]
k1−→ gateHS[X150] + strandBS[X150]

gateHS[X150] + strandBS[X150]
qmax−→ X150 + gateLS[X150]

X151 + gateLS[X151]
k1−→ gateHS[X151] + strandBS[X151]

gateHS[X151] + strandBS[X151]
qmax−→ X151 + gateLS[X151]

X160 + gateLS[X160]
k1−→ gateHS[X160] + strandBS[X160]

gateHS[X160] + strandBS[X160]
qmax−→ X160 + gateLS[X160]

193

X161 + gateLS[X161]
k1−→ gateHS[X161] + strandBS[X161]

gateHS[X161] + strandBS[X161]
qmax−→ X161 + gateLS[X161]

X170 + gateLS[X170]
k1−→ gateHS[X170] + strandBS[X170]

gateHS[X170] + strandBS[X170]
qmax−→ X170 + gateLS[X170]

X171 + gateLS[X171]
k1−→ gateHS[X171] + strandBS[X171]

gateHS[X171] + strandBS[X171]
qmax−→ X171 + gateLS[X171]

X180 + gateLS[X180]
k1−→ gateHS[X180] + strandBS[X180]

gateHS[X180] + strandBS[X180]
qmax−→ X180 + gateLS[X180]

X181 + gateLS[X181]
k1−→ gateHS[X181] + strandBS[X181]

gateHS[X181] + strandBS[X181]
qmax−→ X181 + gateLS[X181]

X190 + gateLS[X190]
k1−→ gateHS[X190] + strandBS[X190]

gateHS[X190] + strandBS[X190]
qmax−→ X190 + gateLS[X190]

X191 + gateLS[X191]
k1−→ gateHS[X191] + strandBS[X191]

gateHS[X191] + strandBS[X191]
qmax−→ X191 + gateLS[X191]

X20 + gateLS[X20]
k1−→ gateHS[X20] + strandBS[X20]

gateHS[X20] + strandBS[X20]
qmax−→ X20 + gateLS[X20]

X200 + gateLS[X200]
k1−→ gateHS[X200] + strandBS[X200]

gateHS[X200] + strandBS[X200]
qmax−→ X200 + gateLS[X200]

X201 + gateLS[X201]
k1−→ gateHS[X201] + strandBS[X201]

gateHS[X201] + strandBS[X201]
qmax−→ X201 + gateLS[X201]

X21 + gateLS[X21]
k1−→ gateHS[X21] + strandBS[X21]

gateHS[X21] + strandBS[X21]
qmax−→ X21 + gateLS[X21]

X210 + gateLS[X210]
k1−→ gateHS[X210] + strandBS[X210]

gateHS[X210] + strandBS[X210]
qmax−→ X210 + gateLS[X210]

194

X211 + gateLS[X211]
k1−→ gateHS[X211] + strandBS[X211]

gateHS[X211] + strandBS[X211]
qmax−→ X211 + gateLS[X211]

X220 + gateLS[X220]
k1−→ gateHS[X220] + strandBS[X220]

gateHS[X220] + strandBS[X220]
qmax−→ X220 + gateLS[X220]

X221 + gateLS[X221]
k1−→ gateHS[X221] + strandBS[X221]

gateHS[X221] + strandBS[X221]
qmax−→ X221 + gateLS[X221]

X230 + gateLS[X230]
k1−→ gateHS[X230] + strandBS[X230]

gateHS[X230] + strandBS[X230]
qmax−→ X230 + gateLS[X230]

X231 + gateLS[X231]
k1−→ gateHS[X231] + strandBS[X231]

gateHS[X231] + strandBS[X231]
qmax−→ X231 + gateLS[X231]

X240 + gateLS[X240]
k1−→ gateHS[X240] + strandBS[X240]

gateHS[X240] + strandBS[X240]
qmax−→ X240 + gateLS[X240]

X241 + gateLS[X241]
k1−→ gateHS[X241] + strandBS[X241]

gateHS[X241] + strandBS[X241]
qmax−→ X241 + gateLS[X241]

X250 + gateLS[X250]
k1−→ gateHS[X250] + strandBS[X250]

gateHS[X250] + strandBS[X250]
qmax−→ X250 + gateLS[X250]

X251 + gateLS[X251]
k1−→ gateHS[X251] + strandBS[X251]

gateHS[X251] + strandBS[X251]
qmax−→ X251 + gateLS[X251]

X260 + gateLS[X260]
k1−→ gateHS[X260] + strandBS[X260]

gateHS[X260] + strandBS[X260]
qmax−→ X260 + gateLS[X260]

X261 + gateLS[X261]
k1−→ gateHS[X261] + strandBS[X261]

gateHS[X261] + strandBS[X261]
qmax−→ X261 + gateLS[X261]

X270 + gateLS[X270]
k1−→ gateHS[X270] + strandBS[X270]

gateHS[X270] + strandBS[X270]
qmax−→ X270 + gateLS[X270]

195

X271 + gateLS[X271]
k1−→ gateHS[X271] + strandBS[X271]

gateHS[X271] + strandBS[X271]
qmax−→ X271 + gateLS[X271]

X280 + gateLS[X280]
k1−→ gateHS[X280] + strandBS[X280]

gateHS[X280] + strandBS[X280]
qmax−→ X280 + gateLS[X280]

X281 + gateLS[X281]
k1−→ gateHS[X281] + strandBS[X281]

gateHS[X281] + strandBS[X281]
qmax−→ X281 + gateLS[X281]

X290 + gateLS[X290]
k1−→ gateHS[X290] + strandBS[X290]

gateHS[X290] + strandBS[X290]
qmax−→ X290 + gateLS[X290]

X291 + gateLS[X291]
k1−→ gateHS[X291] + strandBS[X291]

gateHS[X291] + strandBS[X291]
qmax−→ X291 + gateLS[X291]

X30 + gateLS[X30]
k1−→ gateHS[X30] + strandBS[X30]

gateHS[X30] + strandBS[X30]
qmax−→ X30 + gateLS[X30]

X300 + gateLS[X300]
k1−→ gateHS[X300] + strandBS[X300]

gateHS[X300] + strandBS[X300]
qmax−→ X300 + gateLS[X300]

X301 + gateLS[X301]
k1−→ gateHS[X301] + strandBS[X301]

gateHS[X301] + strandBS[X301]
qmax−→ X301 + gateLS[X301]

X31 + gateLS[X31]
k1−→ gateHS[X31] + strandBS[X31]

gateHS[X31] + strandBS[X31]
qmax−→ X31 + gateLS[X31]

X310 + gateLS[X310]
k1−→ gateHS[X310] + strandBS[X310]

gateHS[X310] + strandBS[X310]
qmax−→ X310 + gateLS[X310]

X311 + gateLS[X311]
k1−→ gateHS[X311] + strandBS[X311]

gateHS[X311] + strandBS[X311]
qmax−→ X311 + gateLS[X311]

X320 + gateLS[X320]
k1−→ gateHS[X320] + strandBS[X320]

gateHS[X320] + strandBS[X320]
qmax−→ X320 + gateLS[X320]

196

X321 + gateLS[X321]
k1−→ gateHS[X321] + strandBS[X321]

gateHS[X321] + strandBS[X321]
qmax−→ X321 + gateLS[X321]

X330 + gateLS[X330]
k1−→ gateHS[X330] + strandBS[X330]

gateHS[X330] + strandBS[X330]
qmax−→ X330 + gateLS[X330]

X331 + gateLS[X331]
k1−→ gateHS[X331] + strandBS[X331]

gateHS[X331] + strandBS[X331]
qmax−→ X331 + gateLS[X331]

X40 + gateLS[X40]
k1−→ gateHS[X40] + strandBS[X40]

gateHS[X40] + strandBS[X40]
qmax−→ X40 + gateLS[X40]

X41 + gateLS[X41]
k1−→ gateHS[X41] + strandBS[X41]

gateHS[X41] + strandBS[X41]
qmax−→ X41 + gateLS[X41]

X50 + gateLS[X50]
k1−→ gateHS[X50] + strandBS[X50]

gateHS[X50] + strandBS[X50]
qmax−→ X50 + gateLS[X50]

X51 + gateLS[X51]
k1−→ gateHS[X51] + strandBS[X51]

gateHS[X51] + strandBS[X51]
qmax−→ X51 + gateLS[X51]

X60 + gateLS[X60]
k1−→ gateHS[X60] + strandBS[X60]

gateHS[X60] + strandBS[X60]
qmax−→ X60 + gateLS[X60]

X61 + gateLS[X61]
k1−→ gateHS[X61] + strandBS[X61]

gateHS[X61] + strandBS[X61]
qmax−→ X61 + gateLS[X61]

X70 + gateLS[X70]
k1−→ gateHS[X70] + strandBS[X70]

gateHS[X70] + strandBS[X70]
qmax−→ X70 + gateLS[X70]

X71 + gateLS[X71]
k1−→ gateHS[X71] + strandBS[X71]

gateHS[X71] + strandBS[X71]
qmax−→ X71 + gateLS[X71]

X80 + gateLS[X80]
k1−→ gateHS[X80] + strandBS[X80]

gateHS[X80] + strandBS[X80]
qmax−→ X80 + gateLS[X80]

197

X81 + gateLS[X81]
k1−→ gateHS[X81] + strandBS[X81]

gateHS[X81] + strandBS[X81]
qmax−→ X81 + gateLS[X81]

X90 + gateLS[X90]
k1−→ gateHS[X90] + strandBS[X90]

gateHS[X90] + strandBS[X90]
qmax−→ X90 + gateLS[X90]

X91 + gateLS[X91]
k1−→ gateHS[X91] + strandBS[X91]

gateHS[X91] + strandBS[X91]
qmax−→ X91 + gateLS[X91]

A.2.2 ADC-3bit DNA

i1 + gateL[1]
k−→ gateH[1] + strandB[1]

gateH[1] + strandB[1]
k−→ i1 + gateL[1]

T1 + gateH[1]
k−→ strandO[1]

strandO[1] + gateT [1]
k−→ W1

i1 + gateL[2]
k−→ gateH[2] + strandB[2]

gateH[2] + strandB[2]
k−→ i1 + gateL[2]

x2n+ gateH[2]
k−→ strandO[2]

strandO[2] + gateT [2]
k−→ i1 + x2p

T1 + gateL[3]
k−→ gateH[3] + strandB[3]

gateH[3] + strandB[3]
k−→ T1 + gateL[3]

x2p+ gateH[3]
k−→ strandO[3]

strandO[3] + gateT [3]
k−→ T1 + x2n

x2p+ i1 + T2
k−→ W2 + x2p

x2n+ gateL[5]
k−→ gateH[5] + strandB[5]

gateH[5] + strandB[5]
k−→ x2n+ gateL[5]

W2 + gateH[5]
k−→ strandO[5]

strandO[5] + gateT [5]
k−→ T2 + x2n+ i1

198

x2p+ i1 + x1n
k−→ x1p+ i1 + x2p

x2p+ x1p+ T2
k−→ T2 + x1n+ x2p

x2n+W1 + Tp2
k−→ Wp2 + x2n

x2p+ gateL[9]
k−→ gateH[9] + strandB[9]

gateH[9] + strandB[9]
k−→ x2p+ gateL[9]

Wp2 + gateH[9]
k−→ strandO[9]

strandO[9] + gateT [9]
k−→ Tp2 + x2p+W1

x2n+W1 + x1n
k−→ x1p+W1 + x2n

x2n+ x1p+ Tp2
k−→ Tp2 + x1n+ x2n

x2p+ gateL[12]
k−→ gateH[12] + strandB[12]

gateH[12] + strandB[12]
k−→ x2p+ gateL[12]

x1p+ gateH[12]
k−→ strandO[12]

strandO[12] + gateT [12]
k−→ q1 + x2p+ x1p

199

q1 + gateL[13]
k−→ gateH[13] + strandB[13]

gateH[13] + strandB[13]
k−→ q1 + gateL[13]

q1 + gateH[13]
k−→ strandO[13]

strandO[13] + gateT [13]
k−→ nth

i1 + gateL[14]
k−→ gateH[14] + strandB[14]

gateH[14] + strandB[14]
k−→ i1 + gateL[14]

T3 + gateH[14]
k−→ strandO[14]

strandO[14] + gateT [14]
k−→ q2

q1 + gateL[15]
k−→ gateH[15] + strandB[15]

gateH[15] + strandB[15]
k−→ q1 + gateL[15]

q2 + gateH[15]
k−→ strandO[15]

strandO[15] + gateT [15]
k−→ W3

W3 + gateL[16]
k−→ gateH[16] + strandB[16]

gateH[16] + strandB[16]
k−→ W3 + gateL[16]

x1n+ gateH[16]
k−→ strandO[16]

strandO[16] + gateT [16]
k−→ i1 + T3 + x1n

W3 + gateL[17]
k−→ gateH[17] + strandB[17]

gateH[17] + strandB[17]
k−→ W3 + gateL[17]

x2n+ gateH[17]
k−→ strandO[17]

strandO[17] + gateT [17]
k−→ i1 + T3 + x2n

q2 + gateL[18]
k−→ gateH[18] + strandB[18]

gateH[18] + strandB[18]
k−→ q2 + gateL[18]

x1n+ gateH[18]
k−→ strandO[18]

strandO[18] + gateT [18]
k−→ i1 + T3 + x1n

200

q2 + gateL[19]
k−→ gateH[19] + strandB[19]

gateH[19] + strandB[19]
k−→ q2 + gateL[19]

x2n+ gateH[19]
k−→ strandO[19]

strandO[19] + gateT [19]
k−→ i1 + T3 + x2n

x1n+ gateL[20]
k−→ gateH[20] + strandB[20]

gateH[20] + strandB[20]
k−→ x1n+ gateL[20]

W3 + gateH[20]
k−→ strandO[20]

strandO[20] + gateT [20]
k−→ T3 + i1 + x1n

x2n+ gateL[21]
k−→ gateH[21] + strandB[21]

gateH[21] + strandB[21]
k−→ x2n+ gateL[21]

W3 + gateH[21]
k−→ strandO[21]

strandO[21] + gateT [21]
k−→ T3 + i1 + x2n

i1 + gateL[22]
k−→ gateH[22] + strandB[22]

gateH[22] + strandB[22]
k−→ i1 + gateL[22]

x0n+ gateH[22]
k−→ strandO[22]

strandO[22] + gateT [22]
k−→ q3 + i1

T3 + gateL[23]
k−→ gateH[23] + strandB[23]

gateH[23] + strandB[23]
k−→ T3 + gateL[23]

q3 + gateH[23]
k−→ strandO[23]

strandO[23] + gateT [23]
k−→ x0n+ T3

201

q1 + gateL[24]
k−→ gateH[24] + strandB[24]

gateH[24] + strandB[24]
k−→ q1 + gateL[24]

q3 + gateH[24]
k−→ strandO[24]

strandO[24] + gateT [24]
k−→ x0p

x2p+ x1p+ T3 + x0p
k−→ x0n+ x2p+ x1p+ T3

x2p+ x1n+W2 + Tp3
k−→ Wp3 + x2p+ x1n

x2n+ gateL[27]
k−→ gateH[27] + strandB[27]

gateH[27] + strandB[27]
k−→ x2n+ gateL[27]

Wp3 + gateH[27]
k−→ strandO[27]

strandO[27] + gateT [27]
k−→ Tp3 +W2 + x2n

x1p+ gateL[28]
k−→ gateH[28] + strandB[28]

gateH[28] + strandB[28]
k−→ x1p+ gateL[28]

Wp3 + gateH[28]
k−→ strandO[28]

strandO[28] + gateT [28]
k−→ Tp3 +W2 + x1p

x2p+ x1n+W2 + x0n
k−→ x0p+ x2p+ x1n+W2

x2p+ x1n+ Tp3 + x0p
k−→ x0n+ x2p+ x1n+ Tp3

x2n+ x1p+W1 + Tpp3
k−→ Wpp3 + x2n+ x1p

x2p+ gateL[32]
k−→ gateH[32] + strandB[32]

gateH[32] + strandB[32]
k−→ x2p+ gateL[32]

Wpp3 + gateH[32]
k−→ strandO[32]

strandO[32] + gateT [32]
k−→ Tpp3 +W1 + x2p

x1n+ gateL[33]
k−→ gateH[33] + strandB[33]

gateH[33] + strandB[33]
k−→ x1n+ gateL[33]

Wpp3 + gateH[33]
k−→ strandO[33]

strandO[33] + gateT [33]
k−→ Tpp3 +W1 + x1n

202

x2n+ x1p+W1 + x0n
k−→ x0p+ x2n+ x1p+W1

x2n+ x1p+ Tpp3 + x0p
k−→ x0n+ x2n+ x1p+ Tpp3

x2n+ x1n+Wp2 + Tppp3
k−→ Wppp3 + x2n+ x1n

x2p+ gateL[37]
k−→ gateH[37] + strandB[37]

gateH[37] + strandB[37]
k−→ x2p+ gateL[37]

Wppp3 + gateH[37]
k−→ strandO[37]

strandO[37] + gateT [37]
k−→ Tppp3 +Wp2 + x2p

x1p+ gateL[38]
k−→ gateH[38] + strandB[38]

gateH[38] + strandB[38]
k−→ x1p+ gateL[38]

Wppp3 + gateH[38]
k−→ strandO[38]

strandO[38] + gateT [38]
k−→ Tppp3 +Wp2 + x1p

x2n+ x1n+Wp2 + x0n
k−→ x0p+ x2n+ x1n+Wp2

x2n+ x1n+ Tppp3 + x0p
k−→ x0n+ x2n+ x1n+ Tppp3

A.2.3 DAC-3bit DNA

b3 + gateL[1]
kf1−→ gateH[1] + strandB[1]

gateH[1] + strandB[1]
qfmax1−→ b3 + gateL[1]

o3 + gateH[1]
qfmax1−→ strandO[1]

strandO[1] + gateT [1]
qfmax1−→ out+ b3 +m3

u3 +m3 + out
k−→ o3 + u3

b2 + gateL[3]
kf1−→ gateH[3] + strandB[3]

gateH[3] + strandB[3]
qfmax1−→ b2 + gateL[3]

o2 + gateH[3]
qfmax1−→ strandO[3]

strandO[3] + gateT [3]
qfmax1−→ out+ b2 +m2

203

u2 +m2 + out
k−→ o2 + u2

b1 + gateL[5]
kf1−→ gateH[5] + strandB[5]

gateH[5] + strandB[5]
qfmax1−→ b1 + gateL[5]

o1 + gateH[5]
qfmax1−→ strandO[5]

strandO[5] + gateT [5]
qfmax1−→ out+ b1 +m1

u1 +m1 + out
k−→ o1 + u1

i1 + gateL[7]
kf1−→ gateH[7] + strandB[7]

gateH[7] + strandB[7]
qfmax1−→ i1 + gateL[7]

T1 + gateH[7]
qfmax1−→ strandO[7]

strandO[7] + gateT [7]
qfmax1−→ W1

i1 + gateL[8]
kf1−→ gateH[8] + strandB[8]

gateH[8] + strandB[8]
qfmax1−→ i1 + gateL[8]

u1 + gateH[8]
qfmax1−→ strandO[8]

strandO[8] + gateT [8]
qfmax1−→ i1 + b1

T1 + gateL[9]
kf1−→ gateH[9] + strandB[9]

gateH[9] + strandB[9]
qfmax1−→ T1 + gateL[9]

b1 + gateH[9]
qfmax1−→ strandO[9]

strandO[9] + gateT [9]
qfmax1−→ T1 + u1

b1 + i1 + T2
k−→ W2 + b1

u1 + gateL[11]
kf1−→ gateH[11] + strandB[11]

gateH[11] + strandB[11]
qfmax1−→ u1 + gateL[11]

W2 + gateH[11]
qfmax1−→ strandO[11]

strandO[11] + gateT [11]
qfmax1−→ T2 + u1 + i1

204

b1 + i1 + u2
k−→ b2 + i1 + b1

b1 + b2 + T2
k−→ T2 + u2 + b1

u1 +W1 + Tp2
k−→ Wp2 + u1

b1 + gateL[15]
kf1−→ gateH[15] + strandB[15]

gateH[15] + strandB[15]
qfmax1−→ b1 + gateL[15]

Wp2 + gateH[15]
qfmax1−→ strandO[15]

strandO[15] + gateT [15]
qfmax1−→ Tp2 + b1 +W1

u1 +W1 + u2
k−→ b2 +W1 + u1

u1 + b2 + Tp2
k−→ Tp2 + u2 + u1

b1 + b2 + i1 + T3
k−→ W3 + b1 + b2

u2 + gateL[19]
kf1−→ gateH[19] + strandB[19]

gateH[19] + strandB[19]
qfmax1−→ u2 + gateL[19]

W3 + gateH[19]
qfmax1−→ strandO[19]

strandO[19] + gateT [19]
qfmax1−→ T3 + i1 + u2

u1 + gateL[20]
kf1−→ gateH[20] + strandB[20]

gateH[20] + strandB[20]
qfmax1−→ u1 + gateL[20]

W3 + gateH[20]
qfmax1−→ strandO[20]

strandO[20] + gateT [20]
qfmax1−→ T3 + i1 + u1

b1 + b2 + i1 + u3
k−→ b3 + b1 + b2 + i1

b1 + b2 + T3 + b3
k−→ u3 + b1 + b2 + T3

b1 + u2 +W2 + Tp3
k−→ Wp3 + b1 + u2

u1 + gateL[24]
kf1−→ gateH[24] + strandB[24]

gateH[24] + strandB[24]
qfmax1−→ u1 + gateL[24]

Wp3 + gateH[24]
qfmax1−→ strandO[24]

strandO[24] + gateT [24]
qfmax1−→ Tp3 +W2 + u1

205

b2 + gateL[25]
kf1−→ gateH[25] + strandB[25]

gateH[25] + strandB[25]
qfmax1−→ b2 + gateL[25]

Wp3 + gateH[25]
qfmax1−→ strandO[25]

strandO[25] + gateT [25]
qfmax1−→ Tp3 +W2 + b2

b1 + u2 +W2 + u3
k−→ b3 + b1 + u2 +W2

b1 + u2 + Tp3 + b3
k−→ u3 + b1 + u2 + Tp3

u1 + b2 +W1 + Tpp3
k−→ Wpp3 + u1 + b2

b1 + gateL[29]
kf1−→ gateH[29] + strandB[29]

gateH[29] + strandB[29]
qfmax1−→ b1 + gateL[29]

Wpp3 + gateH[29]
qfmax1−→ strandO[29]

strandO[29] + gateT [29]
qfmax1−→ Tpp3 +W1 + b1

u2 + gateL[30]
kf1−→ gateH[30] + strandB[30]

gateH[30] + strandB[30]
qfmax1−→ u2 + gateL[30]

Wpp3 + gateH[30]
qfmax1−→ strandO[30]

strandO[30] + gateT [30]
qfmax1−→ Tpp3 +W1 + u2

u1 + b2 +W1 + u3
k−→ b3 + u1 + b2 +W1

u1 + b2 + Tpp3 + b3
k−→ u3 + u1 + b2 + Tpp3

u1 + u2 +Wp2 + Tppp3
k−→ Wppp3 + u1 + u2

b1 + gateL[34]
kf1−→ gateH[34] + strandB[34]

gateH[34] + strandB[34]
qfmax1−→ b1 + gateL[34]

Wppp3 + gateH[34]
qfmax1−→ strandO[34]

strandO[34] + gateT [34]
qfmax1−→ Tppp3 +Wp2 + b1

b2 + gateL[35]
kf1−→ gateH[35] + strandB[35]

gateH[35] + strandB[35]
qfmax1−→ b2 + gateL[35]

Wppp3 + gateH[35]
qfmax1−→ strandO[35]

strandO[35] + gateT [35]
qfmax1−→ Tppp3 +Wp2 + b2

206

u1 + u2 +Wp2 + u3
k−→ b3 + u1 + u2 +Wp2

u1 + u2 + Tppp3 + b3
k−→ u3 + u1 + u2 + Tppp3

A.2.4 Markov Chain DNA

AV + gateL[1]
k−→ gateH[1] + strandB[1]

gateH[1] + strandB[1]
k−→ AV + gateL[1]

A1 + gateH[1]
k−→ strandO[1]

strandO[1] + gateT [1]
k−→ BV +A1

AV + gateL[2]
k−→ gateH[2] + strandB[2]

gateH[2] + strandB[2]
k−→ AV + gateL[2]

A2 + gateH[2]
k−→ strandO[2]

strandO[2] + gateT [2]
k−→ SV +A2

BV + gateL[3]
k−→ gateH[3] + strandB[3]

gateH[3] + strandB[3]
k−→ BV + gateL[3]

B1 + gateH[3]
k−→ strandO[3]

strandO[3] + gateT [3]
k−→ CV +B1

BV + gateL[4]
k−→ gateH[4] + strandB[4]

gateH[4] + strandB[4]
k−→ BV + gateL[4]

B2 + gateH[4]
k−→ strandO[4]

strandO[4] + gateT [4]
k−→ AV +B2

CV + gateL[5]
k−→ gateH[5] + strandB[5]

gateH[5] + strandB[5]
k−→ CV + gateL[5]

C1 + gateH[5]
k−→ strandO[5]

strandO[5] + gateT [5]
k−→ DV + C1

207

CV + gateL[6]
k−→ gateH[6] + strandB[6]

gateH[6] + strandB[6]
k−→ CV + gateL[6]

C2 + gateH[6]
k−→ strandO[6]

strandO[6] + gateT [6]
k−→ BV + C2

DV + gateL[7]
k−→ gateH[7] + strandB[7]

gateH[7] + strandB[7]
k−→ DV + gateL[7]

D1 + gateH[7]
k−→ strandO[7]

strandO[7] + gateT [7]
k−→ EV +D1

DV + gateL[8]
k−→ gateH[8] + strandB[8]

gateH[8] + strandB[8]
k−→ DV + gateL[8]

D2 + gateH[8]
k−→ strandO[8]

strandO[8] + gateT [8]
k−→ CV +D2

EV + gateL[9]
k−→ gateH[9] + strandB[9]

gateH[9] + strandB[9]
k−→ EV + gateL[9]

E1 + gateH[9]
k−→ strandO[9]

strandO[9] + gateT [9]
k−→ FV + E1

EV + gateL[10]
k−→ gateH[10] + strandB[10]

gateH[10] + strandB[10]
k−→ EV + gateL[10]

E2 + gateH[10]
k−→ strandO[10]

strandO[10] + gateT [10]
k−→ DV + E2

FV + gateL[11]
k−→ gateH[11] + strandB[11]

gateH[11] + strandB[11]
k−→ FV + gateL[11]

F1 + gateH[11]
k−→ strandO[11]

strandO[11] + gateT [11]
k−→ GV + F1

208

FV + gateL[12]
k−→ gateH[12] + strandB[12]

gateH[12] + strandB[12]
k−→ FV + gateL[12]

F2 + gateH[12]
k−→ strandO[12]

strandO[12] + gateT [12]
k−→ EV + F2

GV + gateL[13]
k−→ gateH[13] + strandB[13]

gateH[13] + strandB[13]
k−→ GV + gateL[13]

G1 + gateH[13]
k−→ strandO[13]

strandO[13] + gateT [13]
k−→ HV +G1

GV + gateL[14]
k−→ gateH[14] + strandB[14]

gateH[14] + strandB[14]
k−→ GV + gateL[14]

G2 + gateH[14]
k−→ strandO[14]

strandO[14] + gateT [14]
k−→ FV +G2

HV + gateL[15]
k−→ gateH[15] + strandB[15]

gateH[15] + strandB[15]
k−→ HV + gateL[15]

H1 + gateH[15]
k−→ strandO[15]

strandO[15] + gateT [15]
k−→ ENDV +H1

HV + gateL[16]
k−→ gateH[16] + strandB[16]

gateH[16] + strandB[16]
k−→ HV + gateL[16]

H2 + gateH[16]
k−→ strandO[16]

strandO[16] + gateT [16]
k−→ GV +H2)

A.2.5 y(x) = 3
4
x2 − x+ 3

4
DNA

X10 + gateL[1]
qmax1−→ gateH[1] + strandB[1]

gateH[1] + strandB[1]
qmax−→ X10 + gateL[1]

X00 + gateH[1]
qmax−→ strandO[1]

strandO[1] + gateT [1]
qmax−→ S0

209

X10 + gateL[2]
qmax1−→ gateH[2] + strandB[2]

gateH[2] + strandB[2]
qmax−→ X10 + gateL[2]

X01 + gateH[2]
qmax−→ strandO[2]

strandO[2] + gateT [2]
qmax−→ S1

X11 + gateL[3]
qmax1−→ gateH[3] + strandB[3]

gateH[3] + strandB[3]
qmax−→ X11 + gateL[3]

X00 + gateH[3]
qmax−→ strandO[3]

strandO[3] + gateT [3]
qmax−→ S1

X11 + gateL[4]
qmax1−→ gateH[4] + strandB[4]

gateH[4] + strandB[4]
qmax−→ X11 + gateL[4]

X01 + gateH[4]
qmax−→ strandO[4]

strandO[4] + gateT [4]
qmax−→ S2

C00 + gateL[5]
qmax1−→ gateH[5] + strandB[5]

gateH[5] + strandB[5]
qmax−→ C00 + gateL[5]

S0 + gateH[5]
qmax−→ strandO[5]

strandO[5] + gateT [5]
qmax−→ Y 0

C01 + gateL[6]
qmax1−→ gateH[6] + strandB[6]

gateH[6] + strandB[6]
qmax−→ C01 + gateL[6]

S0 + gateH[6]
qmax−→ strandO[6]

strandO[6] + gateT [6]
qmax−→ Y 1

C10 + gateL[7]
qmax1−→ gateH[7] + strandB[7]

gateH[7] + strandB[7]
qmax−→ C10 + gateL[7]

S1 + gateH[7]
qmax−→ strandO[7]

strandO[7] + gateT [7]
qmax−→ Y 0

210

C11 + gateL[8]
qmax1−→ gateH[8] + strandB[8]

gateH[8] + strandB[8]
qmax−→ C11 + gateL[8]

S1 + gateH[8]
qmax−→ strandO[8]

strandO[8] + gateT [8]
qmax−→ Y 1

C20 + gateL[9]
qmax1−→ gateH[9] + strandB[9]

gateH[9] + strandB[9]
qmax−→ C20 + gateL[9]

S2 + gateH[9]
qmax−→ strandO[9]

strandO[9] + gateT [9]
qmax−→ Y 0

C21 + gateL[10]
qmax1−→ gateH[10] + strandB[10]

gateH[10] + strandB[10]
qmax−→ C21 + gateL[10]

S2 + gateH[10]
qmax−→ strandO[10]

strandO[10] + gateT [10]
qmax−→ Y 1

A.2.6 Function e−x DNA

A10 + gateL[1]
k−→ gateH[1] + strandB[1]

gateH[1] + strandB[1]
qmax−→ A10 + gateL[1]

Ap10 + gateH[1]
qmax−→ strandO[1]

strandO[1] + gateT [1]
qmax−→ C11 +A10 +Ap10

A10 + gateL[2]
k−→ gateH[2] + strandB[2]

gateH[2] + strandB[2]
qmax−→ A10 + gateL[2]

Ap11 + gateH[2]
qmax−→ strandO[2]

strandO[2] + gateT [2]
qmax−→ C11 +A10 +Ap11

A11 + gateL[3]
k−→ gateH[3] + strandB[3]

gateH[3] + strandB[3]
qmax−→ A11 + gateL[3]

Ap10 + gateH[3]
qmax−→ strandO[3]

strandO[3] + gateT [3]
qmax−→ C11 +A11 +Ap10

211

A11 + gateL[4]
k−→ gateH[4] + strandB[4]

gateH[4] + strandB[4]
qmax−→ A11 + gateL[4]

Ap11 + gateH[4]
qmax−→ strandO[4]

strandO[4] + gateT [4]
qmax−→ C10 +A11 +Ap11

C10 + gateG[5]
qm−→ strandO[5]

strandO[5] + gateT [5]
qmax−→ nth

C11 + gateG[6]
qm−→ strandO[6]

strandO[6] + gateT [6]
qmax−→ nth

A20 + gateL[7]
k−→ gateH[7] + strandB[7]

gateH[7] + strandB[7]
qmax−→ A20 + gateL[7]

C10 + gateH[7]
qmax−→ strandO[7]

strandO[7] + gateT [7]
qmax−→ C20 +A20 + C10

A20 + gateL[8]
k−→ gateH[8] + strandB[8]

gateH[8] + strandB[8]
qmax−→ A20 + gateL[8]

C11 + gateH[8]
qmax−→ strandO[8]

strandO[8] + gateT [8]
qmax−→ C20 +A20 + C11

A21 + gateL[9]
k−→ gateH[9] + strandB[9]

gateH[9] + strandB[9]
qmax−→ A21 + gateL[9]

C10 + gateH[9]
qmax−→ strandO[9]

strandO[9] + gateT [9]
qmax−→ C20 +A21 + C10

A21 + gateL[10]
k−→ gateH[10] + strandB[10]

gateH[10] + strandB[10]
qmax−→ A21 + gateL[10]

C11 + gateH[10]
qmax−→ strandO[10]

strandO[10] + gateT [10]
qmax−→ C21 +A21 + C11

C20 + gateG[11]
qm−→ strandO[11]

strandO[11] + gateT [11]
qmax−→ nth

212

C21 + gateG[12]
qm−→ strandO[12]

strandO[12] + gateT [12]
qmax−→ nth

A10 + gateL[13]
k−→ gateH[13] + strandB[13]

gateH[13] + strandB[13]
qmax−→ A10 + gateL[13]

C20 + gateH[13]
qmax−→ strandO[13]

strandO[13] + gateT [13]
qmax−→ C31 +A10 + C20

A10 + gateL[14]
k−→ gateH[14] + strandB[14]

gateH[14] + strandB[14]
qmax−→ A10 + gateL[14]

C21 + gateH[14]
qmax−→ strandO[14]

strandO[14] + gateT [14]
qmax−→ C31 +A10 + C21

A11 + gateL[15]
k−→ gateH[15] + strandB[15]

gateH[15] + strandB[15]
qmax−→ A11 + gateL[15]

C20 + gateH[15]
qmax−→ strandO[15]

strandO[15] + gateT [15]
qmax−→ C31 +A11 + C20

A11 + gateL[16]
k−→ gateH[16] + strandB[16]

gateH[16] + strandB[16]
qmax−→ A11 + gateL[16]

C21 + gateH[16]
qmax−→ strandO[16]

strandO[16] + gateT [16]
qmax−→ C30 +A11 + C21

C30 + gateG[17]
qm−→ strandO[17]

strandO[17] + gateT [17]
qmax−→ nth

C31 + gateG[18]
qm−→ strandO[18]

strandO[18] + gateT [18]
qmax−→ nth

A40 + gateL[19]
k−→ gateH[19] + strandB[19]

gateH[19] + strandB[19]
qmax−→ A40 + gateL[19]

C30 + gateH[19]
qmax−→ strandO[19]

strandO[19] + gateT [19]
qmax−→ C40 +A40 + C30

213

A40 + gateL[20]
k−→ gateH[20] + strandB[20]

gateH[20] + strandB[20]
qmax−→ A40 + gateL[20]

C31 + gateH[20]
qmax−→ strandO[20]

strandO[20] + gateT [20]
qmax−→ C40 +A40 + C31

A41 + gateL[21]
k−→ gateH[21] + strandB[21]

gateH[21] + strandB[21]
qmax−→ A41 + gateL[21]

C30 + gateH[21]
qmax−→ strandO[21]

strandO[21] + gateT [21]
qmax−→ C40 +A41 + C30

A41 + gateL[22]
k−→ gateH[22] + strandB[22]

gateH[22] + strandB[22]
qmax−→ A41 + gateL[22]

C31 + gateH[22]
qmax−→ strandO[22]

strandO[22] + gateT [22]
qmax−→ C41 +A41 + C31

C40 + gateG[23]
qm−→ strandO[23]

strandO[23] + gateT [23]
qmax−→ nth

C41 + gateG[24]
qm−→ strandO[24]

strandO[24] + gateT [24]
qmax−→ nth

A10 + gateL[25]
k−→ gateH[25] + strandB[25]

gateH[25] + strandB[25]
qmax−→ A10 + gateL[25]

C40 + gateH[25]
qmax−→ strandO[25]

strandO[25] + gateT [25]
qmax−→ C51 +A10 + C40

A10 + gateL[26]
k−→ gateH[26] + strandB[26]

gateH[26] + strandB[26]
qmax−→ A10 + gateL[26]

C41 + gateH[26]
qmax−→ strandO[26]

strandO[26] + gateT [26]
qmax−→ C51 +A10 + C41

214

A11 + gateL[27]
k−→ gateH[27] + strandB[27]

gateH[27] + strandB[27]
qmax−→ A11 + gateL[27]

C40 + gateH[27]
qmax−→ strandO[27]

strandO[27] + gateT [27]
qmax−→ C51 +A11 + C40

A11 + gateL[28]
k−→ gateH[28] + strandB[28]

gateH[28] + strandB[28]
qmax−→ A11 + gateL[28]

C41 + gateH[28]
qmax−→ strandO[28]

strandO[28] + gateT [28]
qmax−→ C50 +A11 + C41

C50 + gateG[29]
qm−→ strandO[29]

strandO[29] + gateT [29]
qmax−→ nth

C51 + gateG[30]
qm−→ strandO[30]

strandO[30] + gateT [30]
qmax−→ nth

A50 + gateL[31]
k−→ gateH[31] + strandB[31]

gateH[31] + strandB[31]
qmax−→ A50 + gateL[31]

C50 + gateH[31]
qmax−→ strandO[31]

strandO[31] + gateT [31]
qmax−→ C60 +A50 + C50

A50 + gateL[32]
k−→ gateH[32] + strandB[32]

gateH[32] + strandB[32]
qmax−→ A50 + gateL[32]

C51 + gateH[32]
qmax−→ strandO[32]

strandO[32] + gateT [32]
qmax−→ C60 +A50 + C51

A51 + gateL[33]
k−→ gateH[33] + strandB[33]

gateH[33] + strandB[33]
qmax−→ A51 + gateL[33]

C50 + gateH[33]
qmax−→ strandO[33]

strandO[33] + gateT [33]
qmax−→ C60 +A51 + C50

215

A51 + gateL[34]
k−→ gateH[34] + strandB[34]

gateH[34] + strandB[34]
qmax−→ A51 + gateL[34]

C51 + gateH[34]
qmax−→ strandO[34]

strandO[34] + gateT [34]
qmax−→ C61 +A51 + C51

C60 + gateG[35]
qm−→ strandO[35]

strandO[35] + gateT [35]
qmax−→ nth

C61 + gateG[36]
qm−→ strandO[36]

strandO[36] + gateT [36]
qmax−→ nth

A10 + gateL[37]
k−→ gateH[37] + strandB[37]

gateH[37] + strandB[37]
qmax−→ A10 + gateL[37]

C60 + gateH[37]
qmax−→ strandO[37]

strandO[37] + gateT [37]
qmax−→ C71 +A10 + C60

A10 + gateL[38]
k−→ gateH[38] + strandB[38]

gateH[38] + strandB[38]
qmax−→ A10 + gateL[38]

C61 + gateH[38]
qmax−→ strandO[38]

strandO[38] + gateT [38]
qmax−→ C71 +A10 + C61

A11 + gateL[39]
k−→ gateH[39] + strandB[39]

gateH[39] + strandB[39]
qmax−→ A11 + gateL[39]

C60 + gateH[39]
qmax−→ strandO[39]

strandO[39] + gateT [39]
qmax−→ C71 +A11 + C60

A11 + gateL[40]
k−→ gateH[40] + strandB[40]

gateH[40] + strandB[40]
qmax−→ A11 + gateL[40]

C61 + gateH[40]
qmax−→ strandO[40]

strandO[40] + gateT [40]
qmax−→ C70 +A11 + C61

C70 + gateG[41]
qm−→ strandO[41]

strandO[41] + gateT [41]
qmax−→ nth

216

C71 + gateG[42]
qm−→ strandO[42]

strandO[42] + gateT [42]
qmax−→ nth

A10 + gateL[43]
k−→ gateH[43] + strandB[43]

gateH[43] + strandB[43]
qmax−→ A10 + gateL[43]

C70 + gateH[43]
qmax−→ strandO[43]

strandO[43] + gateT [43]
qmax−→ C81 +A10 + C70

A10 + gateL[44]
k−→ gateH[44] + strandB[44]

gateH[44] + strandB[44]
qmax−→ A10 + gateL[44]

C71 + gateH[44]
qmax−→ strandO[44]

strandO[44] + gateT [44]
qmax−→ C81 +A10 + C71

A11 + gateL[45]
k−→ gateH[45] + strandB[45]

gateH[45] + strandB[45]
qmax−→ A11 + gateL[45]

C70 + gateH[45]
qmax−→ strandO[45]

strandO[45] + gateT [45]
qmax−→ C81 +A11 + C70

A11 + gateL[46]
k−→ gateH[46] + strandB[46]

gateH[46] + strandB[46]
qmax−→ A11 + gateL[46]

C71 + gateH[46]
qmax−→ strandO[46]

strandO[46] + gateT [46]
qmax−→ C80 +A11 + C71

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Overview
	Contribution
	 Outline of the Dissertation

	Design and Modeling of Molecular Computing Systems
	Design (Programming)
	Simulation (Modeling)
	Stochastic model
	Mass-action kinetic model

	Implementation

	Asynchronous Discrete-time Signal Processing
	Prior Work
	Fully-Synchronous Framework
	Globally-Synchronous Locally-Asynchronous Framework (RGB)

	Fully Asynchronous Scheme
	 SIMULATION RESULTS
	COMPARISON

	Mixed-Signal Molecular Computing Systems
	Molecular Continuous-Time Systems
	Digital Sensing and Computing Molecular Systems
	Analog to Digital Converter (ADC)
	Molecular Digital Logic Circuits
	Digital to Analog Converter (DAC)
	A complete molecular digital System

	DNA Implementation
	Discussion and Concluding Remarks

	Markov Chain Computations using Molecular Reactions
	Introduction
	 Modeling by Molecular reactions
	 Analysis of the Proposed Molecular Model
	 Stochastic Model
	 Mass-action Kinetics

	 DNA implementation
	 Discussion

	CRNs for Computing Polynomials Using Fractional Coding
	Fractional Coding
	CRNs for Computing Polynomials
	Representation by Bernstein Polynomials
	Synthesizing CRNs for Computing Polynomials
	Proof Based on the Mass-Action Kinetics
	Encoding and Decoding
	DNA Implementation

	Discussion

	CRNs for Computing Mathematical Functions using Fractional Coding
	Prior work
	CRNs for Multiplication Units
	Mult unit:
	NMult unit:

	Designing CRNs for Computing Functions
	Methodology

	Molecular Perceptron
	MUX unit:
	Bipolar Mult unit:
	Bipolar NMult unit:
	Bipolar sigmoid function

	DNA Implementation
	Discussion

	Conclusions and Future Directions
	Conclusion
	Future Directions

	References
	 Appendix A. List of molecular Reactions
	Molecular Reactions
	molecular perceptron
	molecular ADC 3bit
	molecular DAC 3bit
	molecular Adder 3bit
	molecular Markov
	y(x)=34x2-x+34 Molecular
	molecular encoder
	molecular decoder
	molecular e-x
	molecular bipolar sigmoid
	molecular unipolar sigmoid
	molecular Fully async FIR
	molecular Fully async IIR

	DNA Reactions
	perceptron DNA
	ADC-3bit DNA
	DAC-3bit DNA
	Markov Chain DNA
	y(x)=34x2-x+34 DNA
	Function e-x DNA

