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In order to better characterize the behavior of biochemigstesns, it is sometimes helpful and
necessary to introdudeme-dependent input signalff the state of a biochemical system with
such signals is assumed to evolve deterministically andmoatisly, then it can be readily ana-
lyzed by solving ordinary differential equations. Howe\vEit assumed to evolve discretely and
stochastically, then existing simulation methods cannopipéied. In this paper, we incorporate
conditions fortransient analysisnto stochastic simulation and we develop the corresponding
simulation algorithm. Applying our method to examples, we derratesthat it can yield new
insights into the dynamics of biochemical systems; specificilican be used to verify the
design of biochemical logic gates.

1. Introduction

Certain biochemical systems appear to exploit randomoasssing between dif-
ferent outcomes with a probability distribution — in effdoedging their bets with
a portfolio of responses. Examples include gap pili epigenetic response of
bacteria [1], the lentiviral positive-feedback loop in tH&V virus [2], and the
lysis/lysogeny switch of theambdabacteriophage [3].

Gillespie proposed th&ochastic simulation algorithm (SSA) to characterize
discrete, random biochemical reactions [4]. The SSA trauleger quantities of
the molecular species in a biochemical system, executiagtions at random
based on propensity calculations. Repeated trials arenpeefl to characterize
the evolution of the system. Gillespie demonstrated thatSBA has a firmer
physical basis than continuous, deterministic methodstlaadit provides more
accurate simulation results [5]. The SSA works well for eys$ in which the
guantities of the species are small. However, for largetesys, the computation
time becomes prohibitive. Improved algorithms have beapgsed [6]. Also,
approximation methods have been applied [7], [8], [9], [101].
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In a typical application of the SSA, the system is assumecttoldsed: after
the initial state is fixed, the time evolution of the systentyoslepends on the
internal reactions. But what if we want to characterize thkdvior of a system
when there exist external mechanisms that modify the qiestf species? For
instance, we may need to study what happens when an exteuraksnjects or
drains certain species into or from the system. The extetmahge might occur
periodically or it might be dependent on the trajectory of g8ystem, e.g., the
guantities of species might be limited by threshold cood#i Existing methods,
such as Gillespie’s SSA, cannot handle such behaviors.

For electrical circuits, transient analysis consists @fetsweep using numer-
ical methods to solve differential equations, with the agieg points solved by
setting all the time derivatives to zero. Similarly, in adhemical system, vari-
ous input signals can be defined and the system can be sohmdjthordinary
differential equations (ODES) or differential algebraguations (DAES). Indeed,
several authors have suggested using a standard elesirraahtion tool called
SPICE to model biochemical reactions [12], [13], [14], [1BI6]. However, this
presumes that the biochemical systems under investigatéoontinuous and de-
terministic.

In this paper, we propose an approach cabemthastic transient analysis
(STA). It incorporates time-dependent variations in thargities of species into
stochastic simulation. We consider pulse, piecewisealinand sinusoidal sig-
nals. The method can be readily generalized to include dtbe+form functions.
The signals are eithdorcedor injected Further, threshold-triggered signals are
incorporated.

We apply the STA method to analyze a simple model cdlletka We also
apply it to analyze the time-dependent behavior of the tevenodel proposed
in [17]. We propose designs for other types of biochemicgld@ates (AND,
OR, NAND and XOR) and we apply our STA method to verify the bhatiaof
these.

2. Stochastic Transient Analysis

The power of transient analysis resides in the fact thatithe behavior of the
system can be simulated with different types of input sigrialaccommodate
different analysis scenarios.

2.1. Categorizing Input Signalsfor Stochastic Transient Analysis

Although we do not discuss transient analysis of electricuiis here, we borrow
from this field standard forms in which input signals can begarized: pulse,
piecewise linear (PWL) and sinusoidal.
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(1) PULSEVy,Vo,tq,t, 5, pw, P), wherev, is the initial valueys is the pulsed
value,tq is the delay timet; is the rise timef; is the fall time, py is the
pulse width and® is the period.

(2) PWL(ty,v1,t2,Vo,...), wherev is the input value at timé&, v, the input
value at timedy, etc.

(3) SIN(vp,Va,F,1t4,0,9), wherey is the offsety, is the amplitudeF is the
frequencyyy is the delayf is the damping factor angis the phase.

In addition to theform of the input signals, we distinguish between two ways
of imposingthem onto the system: they are eitli@rcedor injected The former
means that the quantity of the species is set by some exteraianism rather
than by the internal reactions. The latter means that amrextenechanism adds
to or subtracts from the quantity of the species that aresptes

Also, we allow forthreshold-triggerednput signals: these are signals that
start or stop based on threshold quantities of species.i higeful in simulating
boundary conditions, say between qualitatively diffengindses in the evolution
of a biochemical system. For example, suppose that aftehimg a threshold
guantity of 1000 for a species, the system is deemed to goghra transition:
above this threshold, an external mechanism begins ingeotw species.

The format of an input signal for our STA method is summariaedollows.
Here <> means that the contents are mandatory wfjilmeans that they are
optional. (Some details are omitted; these will be impletatton-dependent.)

< SPECIES> < INITIAL > (1)
[< FUNCTION> < FORCED| INJECTED>] [CONDITION

where SPECIESis the species name]NITIAL is the initial quantity;
FUNCTION is the definition of an input signal functionfFORCED or
INJECT EDis the way that the input is imposed; a8@NDIT IONis the defini-
tion of a threshold condition on the quantity of a species s&taf species.

2.2. Stochastic Transient Analysis Algorithm

Our transient analysis method could be incorporated injo airthe proposed
stochastic simulation algorithms, for instance that dbscrin [6]. For simplicity,
we describe its implementation in terms of Gillespie’s dit®SA, proposed in [4].
Suppose we have a biochemical system consistimgdifferent species inter-
acting throughm different reactions. The species are denoted;kiy=1,...,n)
and their corresponding quantities &¢i = 1,...,n). The reactions are denoted
by R(i =1,...,m) and the corresponding rates &téd = 1,...,m). The system
state at time pointis denoted byg = (X1(t),...,Xn(t)). At the start of the simu-
lation, the system state & = (X1(0),...,X,(0)). At each step of the simulation,
the next reaction to fire as well as the time point at which thaction fires are
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decided. According to Gillespie, these are computed agvist!

p-1 H

v;av < T8 < V;av, @)
T=(1/a0)In(1/r2), ®3)
ao Eviav, (4)
a=hc(v=1...,m), (5)

wherep is the next reaction that fires;s the time elapsing from the present until
the next reaction fires;; andr, are two random numbers generated by a unit-
interval uniform random number generathby;is the number of distinct molecular
reactant combinations available for reactiRnin state(Xy, ..., Xy); andc, is the
rate for reactionR,.

In transient analysis, different types of input signals barspecified.

e For forced signals, the value of the species is sampled fhanfunction
that is defined, taken at the current time point; the nextti@adas no
effect on its value.

e For injected signals, the amount to be injected is calcdlayesubtracting
the function value at the current time potatfrom the function value at
the next time pointy:

injected number= | f(tn) | — [ f(tc))]. (6)

This amount is added to the quantity of the correspondingispéogether
with the change in quantity that the next reaction produces.

If a threshold condition exists, then a forced or injecteghal is only applied if
the threshold condition is met.

We note that with this increased flexibility in the simulatiof input signals,
the amount of data that must be recorded increases. If ingrieed as described
above, the amount of data generated increases propolyievii the number of
trials. To mitigate against this, we propose the followirgedstructure; it requires
constant memory, independent of the number of trials.

SupposeT is the simulation time, andll is the total number of simulation
steps. We separaf® into N time segments equallyf(i —1)T/N,iT /N](i =
1,...,N). A accumulatecstateS") (i = 1,...,N) is attached to each correspond-
ing time segment. For each time point in each trial, if theetipoint falls ini-th
time segment, then the corresponding state is added fetthaccumulated state
S0, At the end of simulation, each accumulated state is averhgalividing it
by the total number of trials that landed in the correspogdiime segment. The
final results can be plotted by usitygeneral states &f time points. The data
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structure is shown in Fig. 1.

0 TIN 2TIN (N-1)T/N  (N-1)T/N 1

Figure 1. Time segmenting for multi-trial STA.

3. Stochastic Transient Analysis of the L otka M odel

In this section, we apply our method to a simple biochemiaadieh called_otka,
described by the following set of coupled reactions:

C1 C2 C3
X+y1r ——> X+2y1, Yi+Y2 ——> 22, Yo ——> Z (7)

In [4], Gillespie analyzes the Lotka model. Some of the cosicns that he
presents are qualitative deductions. For instance, hestiitat “no matter what
the state of the system is initially, it will eventually wing in either the state
(y1 =0,y2 =0) or the stateyj = c,y> = 0).” No simulation results are provided
to support this. Here we show how transient analysis canée@ toselucidate such
behaviors.

Note that we can characterize the situation where the mouhelsaup in the
state 1 = 0,y> = 0) simply by simulating it for enough steps. However, we
cannot do the same to characterize the situation where dsmip in the state
(y1 = ,y2 = 0). In this case, ag; approaches infinity, the time steps between
reactions firing become infinitesimal small; eventually,irimite number of re-
actions fire per time unit. Gillespie’s SSA cannot handlendimiting conditions.
However, with our transient analysis method, we can chariaet such limits by
defining threshold events. If we constrain the outputdb be, say 20,000, as an
approximation of infinity, we will get the waveform in Fig. &)

Now suppose there is some external mechanism which forcds stay
at a constant value of 1000. The waveform of Fig. 2(b) illaigts the simu-
lation results for such forcing. Interestingly, we obsethat y, still gets to
zero, even though this takes much longer. We expect that ahee vof y,
should be proportional ta, while the value ofy; should not change witlx.
This can be verified through the simulation results depidtethe two wave-
forms of Fig. 2(d) and Fig. 2(e), whereis set to be a pulse function of time:
PULSE10 30 50 0 0 50 100 as displayed in Fig. 2(c). Here threshold events are
defined: oncey; ory, reaches zero, more of the corresponding species is injected
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Figure 2. Stochastic transient analysis of the Lotka mod&ial. (a) System reaching staig &
o,yp = 0); (b)y; is forced to a constant; (8)is set to a pulse function of time; () does not change
with x; (e)y2 changes wittx.

to keep the fluctuations going.

4. Stochastic Transient Analysis of Biochemical L ogic Gates

In this section, we apply our STA method to the design of bémaital logic gates.
First, we consider the inverter model proposed in [17]. Thenpropose a simple
model for other logic gates: AND, NAND, OR and XOR. We simeltitese using
our STA method to characterize their behavior.
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4.1. Biochemical | nverter

Some of the behaviors of gene regulation systems can beatbarad as logical
operations. For instance, RNA polymerase will stop trabswy a gene if there
exists a repressor protein which binds to the operator ofjere’s promoter. |If
one considers the concentration of the gene and the coatientof the repres-
sor as two signals, then the relationship between themesalikinverter. In [17],
the authors present the following set of coupled reactiondeting this behav-
ior. They analyze their model, deterministically. Here vpplst our stochastic
transient analysis method.

Kdim(a) Ksngi(a) Kdim(z)
at+a—— a2, a2———a+ta, 2+72— 22,
Ksngl(z) Krprs(a2) Kdis(aZ)
22— 7+27 gz+a2 —> gz, gz — > gz+a2,
Krprs(ag) Kais(ad) Kdeqa)
gzd&+a2— > gzal, gzl ————> gz +a2, a———> g,
Kdeqaz) Kdeqz) Kdeqz)
_—> ﬂ, VA > 57 2 ﬂ’
Kdec(gaz) Kdet(ga4) Kdet(mrna)
gz ———> gz gzal ———> gz, mrnaz——> @,
szcribe leate
gz+rnap—— gz+rnap+mrnaz mrna2 + rnaa——— mrnaz+rrna+z
(8)

In the model, the speciesrepresents the input to the inverter, and the species
zits output. In the simulation, we first provide a logical v&lQ’ as the input, i.e.,
we set the quantity of the speciago zero. We expect to get logical ‘1’ at the
output; this corresponds to a quantity of about 12.of

To impose logic ‘1’ at the input, the authors in [17] suggésttian externally-
imposed drive is needed to increase the quantity of specieBased on the
strength of the external driva,achieves an equilibrium at the bottom or at the top
of its signal range. Accordingly, the transfer curve of theerter can be drawn
by changing the external drive from weak to strong, gragu&lere we consider
a pulse input signal, shown in Fig. 3(a). We simulate the rhadimg our STA
method; the results are plotted in Fig. 3(b). These wavedarkearly depict the
transient behavior of an inverter: when the input signabig the output signal is
high and vice versa.
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Figure 3. Stochastic transient analysis of the inverteiiaBst (a) Input, (b) Output.
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Figure 4. Stochastic transient analysis of the AND gateiaBstr(a) Input; (b) Output.

4.2. Logic Gates

In [17], the approach taken to create a NAND gate is to “wie*@he outputs of
multiple inverters by assigning them the same output gemmsveder no reaction
model is given for the NAND gate. Here, we explicitly desiggit gates with
reaction models and then use STA to verify our models.

First we design the reaction model of an AND gate. This isive(9). The
reaction constantg andc; can be adjusted to get the same quantity level for logic
‘1’ as for the inverter ¢, /c; ~ 12). To verify the model, we apply as input signals
two forced pulse signals with the same period but differdr@ses, as shown in
Fig. 4(a). The simulation result is plotted in Fig. 4(b). Twaveform clearly
depicts the transient behavior of an AND gate.

C1
X4y ——> X+Yy+2
Cz . (9)

ZI—> (@
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Figure 5. Stochastic transient analysis, 3 trials. (a) NAKD OR, (c) XOR with high frequency,
(d) XOR with low frequency.

Other logic gates are designed as follows.

e By simply connecting an inverter to the output of the AND gate obtain
a NAND gate. Here the output of the AND gate acts as the extdriwe
for the input of the inverter. Using the same input signalfoashe AND
gate simulation, we obtain the simulation results shownign 5(a).

e We can obtain an OR gate by hooking three inverters on an AN& gae
on each input and one on the output. The result is a total ohg&cal
reactions; these are not listed here. The simulation esué shown in
Fig. 5(b), using the same input signals as for the AND gate.

e We can obtain an exclusive-OR (XOR) gate with two invertews, AND
gates, and one OR gate. The result is a total of 91 chemicelioes;
these are not listed here. We show two different simulatésults for the
XOR gate: one in which the input signals are changing fromtiawigh
more rapidly, Fig. 5(c), and one where they are are changisgrapidly,
Fig. 5(d). In Fig. 5(c), the output does not have enough tioneach the
high level corresponding to logical ‘1’. In contrast, in Fi(d), we obtain
a clean XOR response.
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5. Conclusions

The characterization of the XOR gate in the preceding sedlisstrates the sort
of information that transient analysis provides: it allousto characterize not
only the input-output response of a system, but also its ¢eatglynamics. Our
implementation of the method provides the flexibility to @@erize such tem-
poral dynamics for a variety of analysis scenarios. We areently working on
incorporating the method into simulation tools such as Bi@E [18]. Also, we
are applying it to problems in the computer-aided desigryoftetic modules of
biochemistry [19].
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