
Technical summary: University of Illinois, Texas, Minnesota
Period of Performance: [January 1st, 2018 – Janury 1st, 2021]

DISTRIBUTION STATEMENT

• High cost of synthesis calls for new information
encoding methods. Propose to encode information
by nicking native DNA at positions specified by
integer-encoded user information. Goal is to
significantly reduce system implementation cost.

• Nicked DNA may be used in a new computational
paradigm, termed nick displacement, to implement
counters and comparison units. Goal is to integrate
storage and computing paradigms via nick
information and perform in-memory computations.

Key innovations:
1) Novel encoding via positional information and native

DNA strand nicking;
2) Novel error-control mechanisms for nick readouts;
3) Simple random access strategies;
4) Novel parallel, selective nicking strategies;
5) Register-based data formating/organization;
6) Novel nick displacement computing paradigm;
7) Implementation of counters and comparison units for

in-memory computations.
8) Potential implementation of in-memory computation

following Minsky’s Register Machine.
9) Seamless integration of storage and computing.

Existing methods are exclusively built around synthetic
DNA encoding information in the symbol values. They do
not involve computational features.

Native (naturally
occurring) DNA

Positional encoding via
DNA nicking

Nick-displacement
based computing

Process
Automation

Specialized encoding for digital data into naturally occurring DNA.
New computational paradigms based on positional encoding.

Specialized reading and
computing strategies via
nicking of native DNA.
Sequencing and decoding for
positional information.

The Team

2

Olgica Milenkovic, PI, University of Illinois

Expertise: Error-control and constraint coding for modern storage devices.

Marc Riedel, co-PI, University of Minnesota

Expertise: DNA computing, in memory computing.

David Soloveichik, co-PI, University of Texas, Austin

Expertise: DNA computing, molecular programming.

Alvaro Hernandez, co-PI, University of Illinois

Expertise: DNA sequencing.

Huimin Zhao, co-PI, University of Illinois

Expertise: Chemistry, synthetic biology.

3

Start of the Art

Definition of SOA?

Conceptual simplicity?

Church et al, 2012
Goldman et al, 2013

Largest density?

Fountains: Erlich et al, 2017; Yazdi et al, 2017 (UIUC team)
Microsoft Research, 2016

>215PB/g, file sizes >2MB

Access and rewriting, functional capabilities?

First PCR-based random access architecture
First portable architecture
Yazdi et al, 2017 (UIUC team)

Smallest cost per base? ???

4

Start of the Art

Company Length (bp) #Oligos Concentration Price (USD)
CustomArray 10-79 92,918 1 fmol $4,000
Twist Bioscience 1-120 600,000 0.25 fmol $59,160
ThermoFisher 5-40 24 25 nmol $5.2
Operon 20 96 4 nmol $115
IDT 20 1 25 nmol $7.4

DNA data blocklengths: 100-1000bps

Costs?

In house synthesizers (BioLytics, BioXP): ~20bps

Native DNA based storage: Bringing down the cost and in memory computing!
Our proposed methodology: “Teaching a new dog an old trick.”

5

Beyond the Start of the Art

50nmols, oligolength ~20: >200,000 “punches” (bits), cost < 10 cents

Beyond the State of the Art

Why Does this Work?

1. Need to synthesize only one primer in sufficiently large concentration to
introduce many nicks at same position in different registers.

2. Each nick encodes log(3) bits, expected number of nicks 200,000.

3. Short oligos (primers) also used needed for computing, may hence be used
for nicking (storage), addressing (random access) and computing (nick
displacement).

4. Why not store information in short ~20bps length oligos directly?

• Problem: How does one store the primer orders?
• mlog(m) bits needed to store order of m items.
• Think of native strand serving as template for the order.

7

Risks

Challenges and risks:

1. Parallelization and scalability?
• Recording time depends on number of edits that may be performed

in parallel.
• Multiple “data registers” needed – system maintenance challenges.

2. Readout architectures?
• Immunoprecipitation-based and nanopore nick detection methods

may be of insufficient accuracy.

3. Integration with displacement computing paradigms?
• Precision of displacement strategies and computational delays.

Current Status/Timeline:

No adjustments made. Additional testing to be performed using nanopore sequencers.

Looking Forward/Next 6 months:

Goal 1: Data encoding, positional conversion, error-correction.
Goal 2: Native DNA sample preparation, replication, register organization.
Goal 2: Parallel register and positional DNA nicking experiments.
Goal 3. Mathematical modeling of DNA nicking-based computational paradigms.
Goal 4. Initial development of readout systems.

• Phase I Goals: Practical implementation of small scale storage architecture,
theoretical development of in memory computational component.

DISTRIBUTION STATEMENT

Status and Outlook

Risks

9

Current and future strategies for risk mitigation:

1. Parallelization and scalability?

• Replace and/or combine PfAgo editing with CRISPR technologies.

• Combine nicking with other writing techniques such as chimeric

synthesis.

2. Readout architectures?

• Molecular simulations to predict technical obstacles in nanopore sequencing

methods.

3. Integration with computing paradigms?

• Difficult to judge. In needed, restricted to counting and comparison.

Lab Facilities

10http://youtu.be/Hwb735qZ-IQ

The Project: Native DNA-Based Data Storage

The storage medium: E. coli K-12

Addressable registers

Yazdi et al, 2015, 2017

The Project: Native DNA-Based Data Storage

Why E. coli K-12?
Length of each substring # unique substrings log4(# unique substrings)
1 4 1.0000
2 16 2.0000
3 64 3.0000
4 256 4.0000
5 1,024 5.0000
6 4,096 6.0000
7 16,383 7.0000
8 65,360 7.9981
9 256,527 8.9844
10 898,115 9.8883
11 2,196,861 10.5335
12 3,478,960 10.8651
13 4,170,362 10.9959

Genome: U00096.3 Escherichia coli str. K-12 substr. MG1655, complete genome

Length in bp: 4,641,652

Length of each substring # unique substrings log4(# unique substrings)
1 4 1
2 16 2
3 64 3
4 256 4
5 1,024 5
6 4,096 6
7 16,384 7
8 65,536 8
9 262,144 9
10 1,048,576 10
11 4,194,304 11
12 16,777,216 12
13 67,108,864 13
14 Still running
15 Still running
16 Still running
17 Still running

Genome: Human genome, GRCh38.p7

Length in bp: 3,085,000,000

Size: 3.1 GB

Three different bacterial genomes were considered in this study. For each genome 𝐺, we counted two
specific numbers:

• 𝑀: Maximum integer 𝑖, such that all the valid strings of length 𝑖, {𝐴, 𝑇, 𝐶, 𝐺}𝑖, appear as a
substring somewhere in the genome 𝐺.

• 𝑚: Minimum integer 𝑖, such that all the substrings of length 𝑖 in the genome 𝐺 are unique.

Organism name Length 𝑀 𝑚
Streptomyces coelicolor A3(2) (high GC Gram+) 9,054,847 5 2,621
Myxococcus xanthus DK 1622 (d-proteobacteria) 9,139,763 6 2,817
Nostoc punctiforme PCC 73102 (cyanobacteria) 9,059,191 5 5,569

The Project: Native DNA-Based Data Storage

Data Encoding

123 (0) 00000 00000 124 (1) 00001 00001 125 (2) 00010 00011 126 (3) 00011 00010

127 (4) 00100 00110 134 (5) 00101 00100 135 (6) 00110 00101 136 (7) 00111 00111

137 (8) 01000 01111 145 (9) 01001 01110 146 (10) 01010 01100 147 (11) 01011 01101

156 (12) 01100 01001 157 (13) 01101 01011 167 (14) 01110 01010 234 (15) 01111 01000

235 (16) 10000 11000 236 (17) 10001 11001 237 (18) 10010 11011 245 (19) 10011 11010

246 (20) 10100 11110 247 (21) 10101 11100 256 (22) 10110 11101 257 (23) 10111 11111

267 (24) 11000 10111 345 (25) 11001 10110 346 (26) 11010 10100 347 (27) 11011 10101

356 (28) 11100 10001 357 (29) 11101 10011 367 (30) 11110 10010 456 (31) 11111 10000

Ternary coding: Do not nick (0), nick sense (1), nick antisense (3)

Nicking window: 10-20 bps

Set encoding: Convert binary string into positions of nicks. Allows for efficient
error correction (Lex and Grey order).

The Project: Native DNA-Based Data Storage

Data Encoding
Set encoding: Convert binary string into sets of positions of nicks.
Error-control through controlled set intersection.

L-intersecting family of sets
(Babai & Frankl, Erdos-Ko-Rado type theorems)

L={1,2,..,s}, s << n

Bad pairs: Good pairs:
{1,3,5,12,46,…} {1,3,5,12,46,…}
{1,3,6,13,46,...} …} {2,7,9,17,33,…}

Can handle: deletions, insertion, transposition errors (Gabry et al, 2017)

The Project: Native DNA-Based Data Storage

Swarts et al. Nature (2014)

Cleavage of ssDNA target using ssDNA guide
for PfAgo

PfAgo: An Ago protein from hyperthermophilic archaea Pyrococcus furiosus, is
uses DNA as guide and cleave ssDNA target at temperatures up to 100 °C.

DNA Nicking

The Project: Native DNA-Based Data Storage

Programmable DNA-guided artificial restriction enzymes

Enghiad & Zhao. ACS Synthetic Biology 2017

The Project: Native DNA-Based Data Storage

Programmable DNA-guided artificial restriction enzymes

DISTRIBUTION STATEMENT

• Programmability and multiplexing
- Can create extremely large number of AREs with virtually any

sequence specificity and defined sticky ends of varying length.
- The system can be used in parallel (multiplexed).
- AREs nickases need only one guide.

• Accessibility
- Low production cost.

• High specificity and activity
- Significantly better than the CRISPR-Cas9 for in vitro applications.

“Revolutionizing Biotechnology with Artificial Restriction Enzymes.” Genetic
Engineering and Biotechnology News, Feb. 10, 2017.

Programmable DNA-guided AREs

The Project: Native DNA-Based Data Storage

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

Input

DNA-Computing: Strand Displacement

Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

DNA-Computing: Strand Displacement

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

DNA-Computing: Strand Displacement

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

DNA-Computing: Strand Displacement

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

DNA-Computing: Strand Displacement

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

DNA-Computing: Strand Displacement

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

DNA-Computing: Strand Displacement

Output

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

DNA-Computing: Strand Displacement

OutputInput

Notice: No sequence overlap!

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

DNA-Computing: Strand Displacement

Input1 + Input2 → Output

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

X + Y → X + B
X + Y → B + Y
X + B → X + X
Y + B →Y + Y

Logic circuit Neural Network Distributed algorithm

• Logic circuits [Seelig et al, Science 2006, Qian et al, Science 2011]

• Neural networks [Qian et al, Nature 2011]

• Distributed algorithms [Chen et al, Nature Nanotechnology 2013]

• Dynamical systems (oscillator) [Srinivas et al, Accepted to Science]

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

DNA-Computing: Strand Displacement and Nick Displacement

	

	

	

	

	

	

DNA	input	T1	

T1	

E1	 E2	

Toehold	region	1	

Toehold	region	3	

DNA	input	T1	

Toehold	region	2	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Toehold	region	

Round	1	

Round	2	

First strand displacement and new nick
displacement paradigm built around
native DNA.

Primers may be used to displace nicks
by one position (for toehold length ~20).

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

DNA-Computing: Strand Displacement and Nick Displacement

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Toehold	region	

Round	1	

Round	2	

Counting: Adding and Subtracting

Displacing nicks left-right until carry over
is encountered

Comparison: Values in different registers

Example: Logical Computation with DNA Strand Displacement. Figure shows simulations of DNA-
based implementations of standard logic gates: (A) AND, (B) OR, (C) NOR, (D) XOR. (Salehi,
Riedel, Parhi, 2015.)

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

DNA-Computing: In Memory Computation

A schematic illustration of an in memory computing algorithm. Neural Computations are
performed directly on data stored in memory. Credit: IBM Research

Computing with high-dimensional vectors (P. Kanerva, Cognitive Computation’09)

Advantages of in memory computations:

• General and scalable model of computing.
• Memory-centric with highly parallel operations.
• Extremely robust against most failure mechanisms and noise.

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

Readout Architectures NGS

1. Nick detection via immunoprecipitation+NGS
2. Nick detection using protein and solid state
nanopores (In collaboration with Radenovic lab,
EPFL, Leburton lab UIUC)

DISTRIBUTION STATEMENT

The Project: Native DNA-Based Data Storage

Nick-Encoding for Watermarking Nicking →
DSB+PCR

Random Access: via strand displacement,
addressing or microtubes
(In collaboration with X. Li Lab, ECE UIUC)
Not funded by this project.

DISTRIBUTION STATEMENT

Closed Session

ROI

Number of people employed, by category:

3 graduate students, 2 postdoctoral fellows.

Number of newly trained scientists in this area: None

Resource Status: None

Number of PhD theses initiated based on this work: None yet

Discoveries utilized on other efforts: NSF CCF, CIA, SRI UIUC

Patents filed: 3

Papers published: For proposed topic material >5 journal papers

Presentations given: [please indicate the number of invited talks separately]

Technology licenses: None

New companies formed: On related subject - HelixVault

Venture capital: None

Follow-on funding: None

DISTRIBUTION STATEMENT

