
Project Description
EAGER: Synthesizing Signal Processing Functions with Biochemical Reactions

1 Introduction

This proposal addresses the synthesis of computations and signal processing operations through protein-
protein biochemical reactions. A typical signal processing operation produces an output signal by filtering or
transforming an input signal: examples are smoothing a signal with a moving-average filter and performing
a Fast Fourier Transform (FFT). The past few decades have seen remarkably progress in the design of
integrated circuits for digital signal processing (DSP) in applications such as audio and video processing.
We aim to apply and extend this expertise to the domain of bio-computation.

In digital signal processing hardware, the inputs and outputs are typically represented in binary form,
say as two’s complement numbers. If the physical quantity is sensed in analog form, then it is sampled and
quantized by an analog-to-digital (A/D) converter. In this project, we will investigate signal processing in a
novel context: protein-protein biochemistry. Here the inputs and outputs are quantities of different
types of proteins.

Conceptually, the rules of biochemistry are straight-forward: each biochemical reaction is a primitive
process that specifies how and at what rate different types of proteins combine to form other types of proteins.
The complexity stems from the dynamics at play among the multitude of coupled reactions operating on
the different protein types. All the biochemistry executes asynchronously and in parallel. Techniques for
analyzing such processes are well established [27, 37, 38, 39, 40]. However, synthesizing computation with
such mechanisms requires new techniques – and an entirely new mindset.

We have advocated a novel view for structuring computation: instead of transforming definite inputs into
definite outputs – say, Boolean, integer, or real values into the same – the circuits and biological systems
that we design transform probability values into probability values; so, conceptually, real-valued probabilities
are both the inputs and the outputs [31, 65]. Note that the underlying behavior is discrete and inherently
random. Nevertheless, when cast in terms of probabilities, the computation is robust: inputs and outputs
are encoded through the statistical distribution of the signals.

This proposal is forward-looking and positioned in the realm of synthetic biology; it is focused on concepts
for designing new functionality with realistic yet abstract mechanisms of biochemistry. The goal of this
research is to demonstrate the feasibility of designing signal processing with biochemistry and to develop the
tools and the methodology for design. We will demonstrate that biochemistry can implement simple and
powerful signal processing operations such as finite impulse response (FIR) and infinite impulse response
(IIR) filters, adaptive digital filters, Fourier transforms, and more complex operations such as adaptive
decision feedback equalizers [62, 64]. As a proof concept, we present detailed designs for FIR and IIR filters
in Sections 2.3.1 and 2.3.2.

It is important to be clear from the outset that the design of these filters and transforms will be formed in
an abstract framework. At this time, our research will not attempt to address the experimental application
of these ideas in vitro or in vivo. That is left to experimental biologists; it is beyond our expertise and
the scope of this proposal. Nevertheless we remark that if our framework is proven feasible, it will open
numerous opportunities in fields such as biochemical sensing and drug delivery.

Imagine a situation where a decision feedback equalizer is implemented entirely through biochemical
reactions: the inputs and outputs are quantities of proteins; the result is a decision to deliver a drug or not,
performed adaptively and autonomously. Or imagine a situation where the biochemistry performs band-pass
filtering of a time-varying input signal: the quantity of output protein is a highly-tuned function of the
frequency of the changes in the quantities of input proteins.

1.1 EAGER Funding

The research outlined in this proposal strives for new and transformative approaches to design in synthetic
biology. A broad theme is the application of expertise from established fields, such as digital circuit design,
to problems in this nascent field. Marc Riedel brings the requisite expertise in design automation and logic
synthesis; Keshab Parhi in integrated circuit design for digital signal processing. The scope of the project is
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conceptually new and exploratory. It straddles existing disciplines but does not fit within any existing NSF
program.

1.2 Design Framework

This project will develop a modular and extensible design flow for implementing biochemical signal processing
functions. Synthesis first will be performed at a conceptual level, in terms of abstract biochemical reactions –
a task analogous to technology-independent synthesis in integrated circuit design. Then the results will
be mapped onto specific biochemical components, selected from libraries – a task analogous to technology
mapping in integrated circuit design.

The goal of our synthesis methodology is to produce a set of biochemical reactions that satisfies the
specified I/O functionality. The input-output (I/O) specification for our methodology can be a functional
specification expressing a relationship time-dependent relationship between input and output quantities of
proteins; for example it could be a moving average, as shown in Figure 1. Alternatively, it could be a set of
data points expressing this relationship as a function of time. In this case, we obtain the requisite functional
relationship through standard curve-fitting techniques. The resulting set of reactions are the equivalent of
the specification of a transistor netlist. Given such a netlist, established simulation methods and tools are
used to characterize the chemical kinetics – a task analogous to the simulation of integrated circuits with
SPICE [61]. The resulting waveforms, specifying quantities of proteins as a function of time, confirm the
validity of the design.

Biochemical “Netlist”
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Example of I/O Specification: 

Two-Tap FIR Filter

a

“Waveforms” of Quantities of Proteins

Figure 1: Our synthesis methodology begins with a functional specification, such as that of an FIR filter,
or a set of data points. It produces a set of biochemical reactions – the equivalent of a circuit netlist. This
netlist is simulated using standard techniques and tools; these produce detailed traces of protein quantities
– the equivalent of voltage and current waveforms produced by a circuit simulation tool.

1.3 Context and Related Work

Increasingly, biology has become a computational science as modeling and simulation are applied alongside
experimental work in the lab [27]. Further, as researchers are striving for new functionality through genetic
manipulations, it is quickly becoming a full-fledged engineering discipline [28]. Recent accomplishments
in this area portend of a coming revolution: Salmonella that secretes spider silk proteins [86]; yeast that
degrades biomass into ethanol [76]; and E. coli that produces anti-malarial drugs [72].

The impetus to create synthetic biological systems is, in fact, broader. In both science and engineering,
understanding is often achieved by constructing and testing simplified systems from the bottom up, teasing
out and nailing down the fundamental principles in the process. Research teams are making significant
progress progress toward the goal of artificial life: a living bacterial cell with fully synthetic DNA [36, 41]. In
engineering terms, the objective is to assemble a machine (a synthetic bacterium) in which the functionality
of all the parts (the genes, the proteins that they code for, and how these interact biochemically) are
understood. If the machine works, this vindicates the scientific understanding; if it doesn’t – and surely
it won’t at first – then new understanding can be achieved by examining where and how it breaks. Of
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course, with a working blueprint for a synthetic machine, new functionality can be engineered robustly and
effectively.

The set of constitutive parts that can be used for genetic manipulation in synthetic systems is vast.
Comprehensive repositories of genetic data have been assembled – some public, some commercial – cataloging
genes, their DNA sequences, and their products [8]. A concerted effort has been made to assemble repositories
of standardized and interoperable parts for synthetic applications [7]. The platforms used will depend on the
application, but the technology for synthesizing DNA is becoming routine: in 2008, firms started offering
custom-gene synthesis through e-commerce websites; the going rate is $0.49 per base pair [33].

So, in a real sense, the hardware for synthetic biology exists, i.e., the technology and infrastructure for
obtaining cells with custom-designed genes. The instruction set is, to a large extent, known, i.e., genes
and their function, cataloged in libraries. The challenge is: how can we write code with these instructions
on this type of hardware?

One of the great successes of integrated circuit design has been in abstracting and scaling the design
problem. The physical behavior of transistors is understood in terms of differential equations operating on
voltage and current values in semiconductor materials. However, the design of circuits proceeds at a more
abstract level – in terms of switches, gates, and functional units. This modular approach makes design
tractable; furthermore, it permits a systematic exploration of different configurations, leading to optimal
designs.

Although driven by experimental expertise, synthetic biology has reached a stage where it calls for a
similar automated design flow. This would allow for virtual experimentation: one could vary the inputs and
parameters of synthetic designs and observe the outputs – in a manner analogous to traditional in vitro and
in vivo experimentation. (This has been dubbed, somewhat facetiously, as “in silico” experimentation [6].)
Beyond analysis, by deliberately applying design methodologies, one could engineer computational con-
trol over biological processes, designing pathways that produce specific outputs in response to different
combinations of inputs.

Indeed, there has been considerable research directed at this question of computation with biological
mechanisms. We do not attempt to catalog all the ideas that have been proposed in this vein; we will only
refer to a slice of some of the research that is relevant to this proposal. Thomas Knight and his colleagues first
suggested the idea of “in vivo” digital circuits in the the 1990’s [82, 83]. Much of the research that followed has
been directed at manipulating the mechanisms of gene regulation [4, 5, 26, 48]. Considerable mathematical
expertise, particularly from the realm of control and dynamical systems, and been developed for and applied
to biological systems [24, 25]. A topic of interest to the mathematical and modeling community is noise and
randomness in biochemical systems [37, 31, 56, 57, 59, 66, 65, 75].

DNA and RNA-based computation have been explored theoretically and demonstrated experimentally [1,
6, 85]. Oscillatory mechanisms, suitable for the sort of clocking used in our designs, have been demonstrated
experimentally [26]. Samoilov, Arkin and Ross established an analytic framework for the dynamics of
biological systems in terms of the signal processing functions that they perform [74].

The NSF has recently awarded Erik Winfree and his colleagues at Caltech the University of Washington
an “Expeditions in Computing” award for research on Molecular Programming. The project brings together
experimental expertise in DNA computing, together with theoretical strengths and mathematical strengths
in control and information theory. (Absent from the team, it should be noted, is expertise in signal processing
and integrated circuit design.) Soloveichik, Cook, Winfree and Bruck discuss theoretical aspects of molecular
computation [78]. The concepts of register-based computation and clocking that we use are due to [23].

While previous work has established analytic frameworks, this proposal is the first research to tackle the
synthesis of signal processing functions with biochemical reactions. Previous work has assumed continuous-
time processing with mechanisms like negative feedback control. We propose a constructive approach based
on discrete-time processing. This brings into the scope of the research the vast body of knowledge and expe-
rience in circuit design for digital signal processing. Further, whereas prior research has focused on gene reg-
ulation as the mechanism for computation, we propose computation performed entirely with protein-
protein interactions. In spite of the fact that a multitude of such reactions happen asynchronously and
in parallel in such system, our method of clock and key generation enables us to implement robust compu-
tation [31].
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2 Technical Approach

The project will assemble a flexible toolkit of functional modules: these include signal processing operations
such as finite impulse response (FIR) and infinite impulse response (IIR) filters, adaptive digital filters,
Fourier transforms, and more complex operations such as adaptive decision feedback equalizers [62, 64].

2.1 Discrete Biochemistry

Interesting biochemistry typically involves complex molecules such as proteins and enzymes. Within the
confines of a cell, the quantities of such molecules are often surprisingly small: on the order of tens, hundreds,
or thousands of molecules of each type. At this scale, individual reactions matter, and the problem must be
analyzed discretely [37].

Consider a system with three types of molecules x1, x2, and x3. The state of the system is described by
the number of molecules: [|x1|, |x2|, |x3|], For instance, the system might be in the state [3, 3, 3] with three
molecules of each type. Consider the three reactions:

R1 : x1 + x2 → 3x3

R2 : x1 + 2x3 → 3x2

R3 : 2x2 + x3 → 2x1.
[3, 3, 3]

[3, 3, 3]

[1, 5, 4]

[2, 2, 6]

R
1

R
2

R
3

start

Figure 2: Biochemical reactions
as discrete events. Beginning
from the state [3, 3, 3], R1 fires, fol-
lowed by R2, followed by R3.

Note that these reactions are coupled: the types appear both as reac-
tants and as products in different reactions. Suppose that the system
is in the state [3, 3, 3] and reaction R1 fires. One molecule of type x1

and one of type x2 are consumed; three of type x3 are produced. This
results in the state transition:

[3, 3, 3]
R1−−−−−−→ [2, 2, 6].

As reactions fire, a cellular process follows a sequence of such transi-
tions. Figure 2 illustrates the trajectory taken from the state [3, 3, 3]
by the sequence R1, R2, and R3.

2.2 Probabilistic Biochemistry

Randomness is inherent: at each instant, the exact sequence of reac-
tions that fires next is a matter of chance. Indeed, ignoring environ-
mental changes outside the cell, one can assume cellular biochemistry
behaves as a Markov process: the probability of future events depends
only on the present state of the cell. At each point in time, the probability of a given reaction firing is a
function of the quantities of different types of molecules present. Specifically, it is proportional to: 1) the
number of ways that the reactants can come together; and 2) and the reaction rate. Suppose that the system
in the example above is in the state S = [3, 4, 5]. There are

3× 4 = 12, 3×
(

5
2

)
= 30,

(
4
2

)
× 5 = 30

ways to choose the reactants of R1, R2, and R3, respectively. Suppose that the rates of reactions R1, R2,
and R3 are 1, 2 and 3, respectively. Then the firing probabilities for R1, R2, and R3 are

12× 1
162

= 0.074,
30× 2
162

= 0.370,
30× 3
162

= 0.556, respectively.

Although we will often refer to rates in relative and qualitative terms – e.g., “fast” vs. “slow” – these are,
in fact, real-valued parameters that are either deduced from biochemical principles or measured experimen-
tally [49].
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Computationally, such discrete probabilistic biochemical systems are characterized through Monte Carlo
simulation [34], [35], [37], [58]. Beginning from an initial state, reactions are chosen at random, based on
propensity calculations. As reactions fire, the quantities of the different species change by integer amounts.
Repeated trials are performed and the probability distribution of different outcomes is estimated by averaging
the results.

In biological systems, signaling pathways produce specific output types of proteins in response to input
types. The exact sequence and timing of biochemical reactions that fire is random. However, the probability
distribution on specific outcomes – for instance, the mutually exclusive production of different signaling
molecules – is precise and robust. This view has strong parallels with an efficient new methodology that
we have developed for synthesizing nanoscale circuits with probabilistic behavior. Our approach produces
circuits that are highly resistant to errors – both in the underlying components and in the signal values.
If noise-related faults produce random bit flips, these result in fluctuations in the statistics; accuracy is
regained through increased redundancy. Thus, the approach provides tolerance of faults that scales gracefully
to large numbers of errors [65]. In synthetic biology, our approach produces a precise distribution of different
outcomes across a population of organisms or in a sequence of trials. This gives us the ability to fine-tune the
response – akin to hedging with a portfolio of investments – in spite of large uncertainties in the underlying
mechanisms [31].

2.3 Signal Processing

D

0.5 0.5

Figure 3: A Two-Tap FIR Filter: it computes a
moving average of the input signal. D is a delay
element.

We have developed modules for computing a variety
of functions: multiplication, exponentiation, log-
arithms, etc. [31]. With our linear and raising-to-a-
power modules, our scheme can be used to implement
arbitrary polynomial functions; hence, in principle, it
could be used to approximate complex functions through
Taylor series expansions.

In this project, we will demonstrate that biochem-
istry can implement simple and powerful signal process-
ing operations such as finite impulse response (FIR) and
infinite impulse response (IIR) filters. In the project, we
will produce a general methodology for the design more
complicated signal processing functions such as adaptive
digital filters, Fourier transforms, and more and adap-
tive decision feedback equalizers.

2.3.1 A Finite Impulse Response (FIR) Filter Design

One of the basic filters in digital signal processing is a two-term moving average filter, shown in Figure 3. It
implements the following function:

Y [n] = αX[n] + βX[n− 1].

with tap coefficients α = β = 0.5. Here x[n] is assumed to be an independent input signal that does not
depend on previous values of x[n]. Similarly, y[n] is a discrete-time output signal that does not depend on
previous values of y[n].

First, we will explain the design of the filter without rate considerations. The set of reactions is shown
in Figure 4. We argue that these reactions “sample” the current value of X and implement the following
computation: firstly types Xa and Xb are both set to the current value X; Xa is used in computing αx[n] at
the current time and Xb is used in computing βx[n− 1] at the next time; Y ′ is is set to a linear combination
of these; the previous value of Y is cleared; and finally Y set to Y ′. If everything were ordered this way,
these reactions would achieve the requisite computation: Y [n] = αX[n] + βX[n− 1].

The challenge in computing with biochemistry, of course, is to enforce such an order of the computation.
All these reaction are executing in parallel and asynchronously. We apply the concepts of module locking
and clocking [32] We create a set of reactions that forms a loop; new types of proteins playing the role of
“keys” are introduced for unlocking phases of the computation according to the progress through the loop.
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Figure 5: Input and output waveforms for a biochemical FIR filter. The input quantity X is shown both
as points from the simulation and as the ideal curve. The output Y is shown in red. The green curve shows
where the value of X is after the average delay of the system in order to be time-aligned with the red output
curve.

The keys are created by “keysmiths”. The six reactions shown in Figure 6 will implement the clock loop.
Each “pulse width” of the clock will have identical width if all of the clocking reactions occur at the same
rate. (Changing the rates of the reactions only changes the duty cycle of the clock.) These reactions ensure
that once a key is present, it cannot be overwritten by a reaction other than one of the clocking reactions.

X → Xa + Xb

αXa → Y ′

βXn → Y ′

Y → �
Xb → Xn

Y ′ → Y

Figure 4: Design of the FIR Filter
in Figure 3 without rate considera-
tions. Here Xa, Xb and Y ′ play the
role of “temporary variables”; α and
β are stoichiometric coefficients – for
the moving average α = β = 2.

The full design of the FIR filter in Figure 3 with module locking
is shown in Figure 7. The assumption that we make about the rates
of these reactions – and the only such assumption – is that they must
all be faster that the clock computations. Provided that this holds
the relative rates do not matter.

We simulate and validate our designs with transient stochastic
simulation [22]. The simulation results for the biochemical FIR fil-
ter illustrates the functionality of the design: the moving average
smooths high-frequency noise. These results are shown in Figure 5.
Here, the input X is shown in green; it is a noisy sinusoid. The out-
put Y is shown in red; note that it is a clearer sinusoidal waveform.

2.3.2 Infinite Input Response Filter (IIR)

Expanding on the design of the FIR filter, we present the full design
of a Biquad IIR Filter [62, 64], shown in Figure 8. This is a flexible
construct that can be used to implement filtering operations. It
implements the function:

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2]− a1y[n− 1]− a2y[n− 2]

For this example, the coefficients were selected for low pass filtering with some overshoot, as this demonstrates
fluctuations on the output:

b0 =
1
3
, b1 =

2
3
, b2 =

1
3
, a0 = 0, a1 =

1
3

(1)

We omit the details of the clock and key generation mechanisms; these are a straight-forward generalization
of those presented for the FIR Filter in Section 2.3.1. The biochemical design of the Biquad IIR Filer is
given in Figure 9. Fractional values for the coefficients are implemented by using reaction (2) for positive
and reaction (3) for negative when the coefficient is of the form A

B .

BX → AY (2)
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BX + AY → � (3)

A stochastic transient analysis of the Biquad IIR was performed, with an input square-waveform X with
a 200 second period, a low amplitude 50 molecules, and a high amplitude of 100 molecules. The resulting
waveforms for the input X and the output Y are shown in Figure 11. To verify the filter’s operation, the
same filtering function was run numerically to obtain the plot in Figure 10. This figure shows that the
output rises slowly compared to the input, but overshoots the input, then rings twice and settles.

key3
slow−→ keysmith1

keysmith1
slow−→ key1

key1
slow−→ keysmith2

keysmith2
slow−→ key2

key2
slow−→ keysmith3

keysmith3
slow−→ key3

Figure 6: The clock design for the FIR Filter.

key1 + X
fast−→ Xa + Xb + key1

key2 + αXa
fast−→ Y ′ + key2

key2 + βXn
fast−→ Y ′ + key2

key2 + Y
fast−→ key2

key3 + Xb
fast−→ Xn + key3

key3 + Y ′ fast−→ Y + key3

Figure 7: The full locked version design of the
FIR filter in Figure 3.

Figure 8: A Biquad IIR Filter.

key1 + X
fast−→ Xa + Xb + key1

key1 + Xn1
fast−→ Xn′

1 + Xn′
2 + key1

key1 + Y n1
fast−→ Y n′

1 + Y n′
2 + key1

key2 + Xa
fast−→ B0 ∗ Y ′ + key2

key2 + Xn′
1

fast−→ B1 ∗ Y ′ + key2

key2 + Xn2
fast−→ B2 ∗ Y ′ + key2

key2 + Y
fast−→ key2

key3 + A1Y
′ + Y n′

1
fast−→ key3

key3 + A2Y
′ + Y n2

fast−→ key3

key4 + Xb
fast−→ Xn1 + key4

key4 + Xn′
2

fast−→ Xn2 + key4

key4 + Y n′
2

fast−→ Y n2 + key4

key4 + Y ′ fast−→ Y + Y n1 + key4

Figure 9: Biochemical Design of the IIR Filter.
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Figure 10: Input vs. Output waveforms for IIR Filter.
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Figure 11: Detailed transient analysis of IIR Filter.

3 Prior NSF Support

• Marc Riedel has been awarded the NSF CAREER award (0845650) Computing with Things Small, Wet
and Random: Design Automation for Digital Computation with Nanoscale Technologies and Biological
Processes, starting July 1, 2009.

• Keshab Parhi was awarded a two-year grant (0811456) Collaborative Research: CPA-DA: Noise-Aware
VLSI Signal Processing: A New Paradigm for Signal Processing Integrated Circuit Design in Nanoscale
Era, starting Sept. 1, 2008.

• We summarize the findings of Keshab Parhi’s most recent past NSF grant-0429979 which ended
on 8/31/2007: This funding allowed his group to develop pipelined and parallel architectures for
Tomlinson-Harashima Precoders, in reducing the complexity of parallel decision feedback equalizers,
in reducing complexity of echo and near-end cross-talk cancelers in multi-gigabit ethernet systems, and
in developing novel low-power architectures for these cancelers. Two patent applications were filed by
the University of Minnesota for the research carried out. Other high-speed building blocks for parallel
filters, parallel adaptive filters, and DCTs were published. Various papers supported by this grant are
referenced in [11]-[21][41]-[46].
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