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ABSTRACT

There are two main models for describing the reaction dynamics of biochemical systems:
the deterministic continuous model and the stochastic discrete model. The former is formu-
lated by a set of coupled ordinary differential equations (ODEs) and can be solved using some
numerical methods such as Euler and Runge-Kutta. The latter, although has been proved to
have a firmer physical basis than the deterministic continuous model and never approximate
infinitesimal time increments, has no direct numerical method to solve, but adopts some Monte
Carlo procedure to numerically simulate the system. To better understand the time behavior
of the biochemical system, it is sometimes necessary and helpful to introduce various types of
input signals to the simulation process. Such input signals are set to be functions of time rather
than just static initial conditions. For deterministic continuous model, this can be analyzed
through solving ODEs or even differential algebraic equations (DAEs) during the simulation,
like what has been done in transient analysis of electrical circuits. However, such transient anal-
ysis method cannot be used in stochastic model, which sometimes is more accurate in describing
the system than deterministic model, especially for cell-scale systems.

To better simulate and analyze the temporal behavior of biochemical systems, we incorpo-
rate a sufficient transient analysis into the stochastic model, define various time-dependent input
signals and develop the corresponding algorithm for the simulation. First we apply the proposed
transient analysis to a simple chemical model called Lotka and perform various simulations on
it. Then we demonstrate how to use it to assist the design of logic gates in biochemical systems.
Lastly it is applied to verify the design of a simplified inverter and a 3-stage ring oscillator
in biochemical systems. Through the simulations, we demonstrate that the proposed method
can yield new insights into the dynamics of biochemical systems; specifically it can be used to
analyze and verify the design of biochemical digital circuits.
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Chapter 1

Introduction

1.1 Modeling and Analysis of Biochemical Systems

The traditional way to simulate the time evolution of biochemical systems is referred as contin-
uous deterministic method. In this method, the system is modeled as a set of coupled ordinary
differential equations (ODEs) or even differential algebraic equations (DAEs) ( [1], [2]) based
on the law of mass action. Although in most cases, continuous deterministic simulation is able
to accurately capture the time behavior of the system, it loses the accuracy when it comes to the
biochemical systems formed by living cells. This is not surprising because the physical nature
of a chemical reaction is actually some kind of collision among molecules, which is stochas-
tic and discrete rather than deterministic and continuous. In a cell-scale system, such inherent
stochasticity of biochemical systems appears more strongly.

To catch the random manner of biochemical reactions, Gillespie proposes a stochastic sim-
ulation algorithm (SSA) in [3] and demonstrates that his method has a firmer physical basis
than the continuous deterministic method and can bring more accurate simulation results. The
SSA works perfectly for small systems in which the quantities of molecules are on the order of
no more than thousands. However, the high computational cost of SSA simulation prohibits it
from being used for large systems. In view of such limitation of SSA, an improved algorithm is
proposed in [4]. And to achieve even better performance in terms of speed, several other meth-
ods have been proposed focusing on adopting approximations during the simulation process as
in [5], [6], [7], [8], [9].
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So far, all the relevant research has been focusing on how to speed up the stochastic simu-

lation and how to use it to analyze and synthesize biochemical systems ( [10], [11]). A typical
scenario is, given the initial state of the system, namely the quantities of each species, we sim-
ulate the system using stochastic simulation to get the trajectory of each species along the time
dimension or the probability of some state at certain time point. Here the system and its initial
state are always assumed static, i.e. no external drive for any species exists. But what if we
want to study the time behavior of the system when there exists some other mechanism which
also affects the quantities of some species. For instance, we may need to study how to make
some system stable by injecting certain species into the system periodically or when some event
fires (e.g. the quantity of some species is below certain threshold). Under such circumstance,
the system cannot be simulated using the existing stochastic simulation methods without any
change. In this thesis, a renovated approach is presented to resolve such issue.

1.2 Synthesis and Design

Similar to the systems in other domain, such as computer science or electrical engineering,
the synthesis and design technologies play the most important role in biochemical systems as
they ast as the interfaces that make it possible to apply all the relevant researches into the real
practical life and benefit the society and the whole human beings. Without them, no matter how
marvelous and perfect the modeling and analyzing approaches are, the domain can only stay on
peer theoretical level, which is almost unacceptable for an engineering field. However, accurate
and precise modeling and analyzing approaches are also critical to the process of synthesis and
design. Nowadays, most systems are so complicated that it is almost impossible to succeed in
building real systems simply based on the design without any simulation and verification.

In biochemical systems, design often falls into two categories [12]: one is use natural bio-
logical components to design a new system with specific function; the other is build a system
by hooking together a series of chemical reactions which do not exist in nature. Compared with
the former, the latter approach is easier to simulate and verify. The reason is because both de-
terministic and stochastic simulations can only get quantitative results if the system is modeled
mathematically. The latter can be accurately modeled by chemical reaction kinetics while there
is no direct mathematical modeling way for the former. Therefore, to simulate the former, mod-
els in chemical reactions need to be built to approximate the function of natural components.
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Such models are either coming out from experiments and personal experience, or from certain
systematic synthesizing method, such as [10] presents a stochastic synthetic method which can
build a chemical reactions model implementing a probabilistic response of the lambda bacte-
riophage. In [13], authors design a biochemical oscillator through a mathematical model of
transcription regulation. They all use either deterministic continuous simulation or stochastic
discrete simulation or both to assist and verify their synthesis and design.

A new stochastic method is presented in this thesis for simulating small-scale biochemical
systems, especially for verifying the design of biochemical digital circuits.

1.3 Contribution

In this thesis, we propose a systematic approach called stochastic transient analysis (STA) to
solve the problem aforementioned. Strictly speaking, stochastic simulation is already a tran-
sient method as it simulates the time-dependent behavior of the system. In electrical circuits,
transient analysis is a time sweep using numerical methods to solve the differential algebraic
equations of the circuits with the operating points solved by DC analysis as the initial condi-
tions. Similar to the transient analysis in electrical circuit simulation, for a biochemical system,
various input signals can be defined and the system can be solved through ODEs or DAEs us-
ing the continuous deterministic method. Actually it is reported that electrical simulation tool
SPICE [14] has been used to model various biosynthesis reactions [15], [16], [17]. And in [18],
authors even present a systematical approach for modeling biochemical systems using SPICE.
However, for cell-scale biochemical systems, stochastic simulation needs to be adopted to get
more accuracy and the input signal form is more complex than electrical circuits. For exam-
ple, an accumulative input signal can be injected into biochemical systems while it cannot for
electrical circuits.

From the discussion above, we see that although the stochastic simulation itself already im-
plies transient analysis, all the existing stochastic methods cannot deal with the situations when
there exists some external driving force which injects or forces the quantity of some species
with a function of time. So in our proposed stochastic transient analysis, we first systemati-
cally categorize various input signal forms based on the feature of biochemical system and then
modify the stochastic simulation algorithm accordingly.
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In STA, input signals are designed to satisfy different application scenarios. The input func-

tions are categorized into pulse, piecewise linear, sinusoidal and some other free-form functions.
And the signal imposed mode is either forced or injected. Further, event-driven signals are
also incorporated. The algorithm describes how to deal with different input signals during the
stochastic simulation. A simple model called Lotka is presented to demonstrate the capability
of the proposed STA.

Specifically for the design of digital circuits in biochemical systems, STA can provide the
transient analysis similar to that in electrical circuit simulation. Actually there already exists a
system called BioSPICE [19], which is an integrated environment for simulating biochemical
systems like SPICE for simulating electrical circuits. However existing approaches for analyz-
ing biochemical circuits are using continuous deterministic approach [20], [21], which might
not be accurate enough for cell-scale systems. In fact, a 1-bit ALU built on DNA transcription
logic has even been proposed in [22]. But the discussion there seems to be quite brief and
the detailed reactions and simulation methods are not given out. In this paper, we use STA
to analyze the time behavior of the inverter proposed in [20], where it is originally analyzed
through continuous way. And STA is also used to verify the design of some other logic gates in
biochemical systems, such as AND, OR, NAND and XOR gates. Lastly we design a simplified
inverter and a 3-stage ring oscillator. STA is applied to verify our design.

1.4 Thesis Outline

• Chapter 2 briefly presents the background knowledge about stochastic simulation algo-
rithm and circuit transient analysis.

• In Chapter 3, the proposed stochastic transient analysis is described.

• In Chapter 4, stochastic transient analysis is applied to simulate and analyze a simple
biochemical model - Lotka.

• In Chapter 5, stochastic transient analysis is used to verify the design of logic gates.

• Chapter 6 presents the design of a simplified inverter and a 3-stage ring oscillator as well
as their simulation results of stochastic transient analysis.
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• Chapter 7 presents a conclusion of the thesis and the discussion of the further investigation

of STA in the future.



Chapter 2

Background

2.1 Modeling Biochemical Systems Deterministically

2.1.1 Chemical Reaction Kinetics

We study biochemical systems by chemical reactions. Suppose we write a chemical reaction as
follows:

(rs1)r1 +(rs2)r2 + . . .+(rsn)rn
k

(ps1)p1 +(ps2)p2 + . . .+(psm)pm , (2.1)

where ri(i = 1,2, . . . ,n) represents a molecule in the system and is called reactant that is con-
sumed in the chemical reaction. pi(i= 1,2, . . . ,m) also represents a molecule but is produced in
the chemical reaction, thus is called product. rsi(i = 1,2, . . . ,n) and psi(i = 1,2, . . . ,m) appear
in front of reactants and products and are called stoichiometries, which represent the quantities
of reactants and products in a chemical reaction. k is the rate constant of the reaction, which
represents the inherent speed feature of the reaction. To analyze biochemical systems quantita-
tively, we must apply the law of mass action to our analysis.

The law of mass action was observed decades ago and the speed of chemical reaction can
be determined by it. According to the law of mass action, the speed of a chemical reaction is
proportional to the product of the concentrations of all the reactants. If we use Ri to represent
the concentration of reactant ri in reaction (2.1), then the time-rate of the reaction, V , can be

6
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computed by:

V = k
n

∏
i=1
Rirsi. (2.2)

2.1.2 Deterministic Continuous Modeling

Suppose we have a simple biochemical system, in which there are only three species denoted
by s1,s2,s3 and their concentrations are represented by S1,S2,S3 respectively. And it has the
following chemical reaction set:

2s1 + s2
k1

2s3

s3
k2

2s1

. (2.3)

From the reaction set (2.3), we can see that two molecules of species s1 are consumed in the
first reaction and two are produced again in the second reaction. But this doesn’t mean that the
concentration of s1 remains constant and doesn’t vary with the time, because the two reactions
have different reacting rates. According to equation (2.2), we get the time-rates of two reactions
as follows:

V1 = k1S2
1S2

V2 = k2S3
. (2.4)

So the variation of S1 over time can be specified by the following differential equation:

dS1
−
dt

= −2k1S2
1S2 + 2k2S3 . (2.5)

Similarly we can get the differential equations for S1 and S2 as follows:

dS2
−
dt

= −k1S2
1S2 , (2.6)

dS3
−
dt

= 2k1S2
1S2 − k2S3 . (2.7)

However, when the system is relatively small, for example a cell, then quantities of molecules
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are usually no more than thousands or even less. With such small number of molecules, the sys-
tem may not be well stirred and the species may not be distributed evenly among the system
environment. Under such circumstance, a uniform concentration can hardly describe the distri-
bution of a species in the system. Moreover, continuous differential equations cannot accurately
approximate the dynamics of the system due to small quantities of molecules.

To overcome such difficult situation, a new approach, stochastic discrete modeling, is pro-
posed. And it is described briefly in the next section.

2.2 Stochastic Discrete Modeling

In [3], the author proposes a stochastic simulation algorithm (SSA) for biochemical systems,
which has been proven to have a firmer physical basis than the deterministic formulation. Fur-
ther, it is an exact approach in the sense that it never approximates infinitesimal time increment
dt by finite time step δ t like most numerical methods do for solving deterministic ODEs.

The main idea of SSA is as follows: in a biochemical system which contains a spatially
homogeneous mixture of the molecules of some chemical species, the sequence of reactions
that fire behaves as a Markov process, i.e. the probability of next reaction depends only on the
present state of the system, not on the past ones. More precisely, the probability that a reaction
is next to fire is proportional to both the number of distinct molecular reactant combinations
available in the current system state for all the reactants in the reaction and its rate which de-
pends on the system volume, temperature and other physical parameters. As a result, if we
define ai as in (2.8), we have the formulation in (2.9) to represent the probability of ith reaction
that fires next.

ai ≡ hici, (2.8)

where hi is the number of distinct molecular reactant combinations available in the current
system state for all the reactants in the ith reaction and ci is the stochastic reaction constant of
the ith reaction.

Pi = ai/a0, (2.9)

where a0 = ∑ai.
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To simulate the time evolution behavior of the system, SSA also gives the formulation of

the time step when the next reaction fires in (2.10).

τ = (1/a0)ln(1/r), (2.10)

where r is a random number generated by a unit-interval uniform random number generator.

2.3 Transient Analysis

Transient analysis is the way to simulate the time evolution of the system. Specifically for
electrical circuits, transient analysis is used to analyze the circuit by solving circuit equations,
usually ODE or DAE, using numerical methods, such as Euler, Trapezoidal, Gear etc. For
example, Fig. 2.1 displays a simple RC circuit. According to MNA (Modified Nodal Analysis),
we can get a differential equation for the voltage v(t). Solving the equation numerically, we can
obtain the time response curve of v(t) to the pulse input signal as depicted in Fig. 2.2.

R

Cv(t)

Figure 2.1: A simple RC circuit.

Similarly, for the deterministic continuous model of biochemical systems, where the system
is modeled by differential equations, the same approach can be applied to get the time response
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Figure 2.2: Transient analysis of the simple RC circuit.

of any species in the system. However, for stochastic discrete model, numerical method cannot
be applied to solve the system, because there are no ODE or DAE equations in the model.
This thesis is focusing on how to perform stochastic discrete transient analysis to biochemical
systems.



Chapter 3

Stochastic Transient Analysis of
Biochemical Systems

The power of transient analysis resides in the fact that the time behavior of the system can be
simulated under different input contexts. The static initial state of the system in the existing
stochastic methods is a special case of various forms of input signal. A powerful sufficient
transient analysis should be able to deal with many kinds of input signals to accommodate
different analytical scenarios. In this section, first the input signal is categorized systematically
for stochastic transient analysis based on the characteristics of biochemical system, then the
proposed STA is described in detail.

3.1 Categorizing Input Signal For STA

Transient analysis has been used to simulate electrical circuits for decades and has been de-
veloped quite maturely and sufficiently. Although the deterministic continuous approach as
adopted in the electrical transient analysis is not discussed for biochemical systems in this pa-
per, the way that the electrical transient analysis organizes input signal can be borrowed for
STA.

In electrical circuit simulation system, input signal for transient analysis is categorized in
three main forms: pulse, piecewise linear (PWL) and sinusoidal as described as follows respec-
tively: PULSE(v1 v2 td tr t f pw per), where v1 is initial value, v2 is pulsed value, td is delay
time, tr is rise time, tf is fall time, pw is pulse width and per is period; PWL(t1 v1 t2 v2 ...),

11
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where v1 is the input value at time t1 and v2 at t2 etc.; SIN(v0 va f req td theta ph), where
v0 is offset, va is amplitude, freq is frequency, td is delay, theta is damping factor and ph is
phase. Apparently pulse and PWL can be adopted in STA without any change because they
are able to capture most input signal scenarios with or without a period respectively. As to the
sinusoidal signal, since it is almost indispensable for analyzing electrical circuits, it can also be
expected to be an important signal form for analyzing biochemical circuits. As a result, all the
input signal forms for the transient analysis of electrical circuits are adopted in STA. Different
from electrical circuits, biochemical systems might be injected or forced into with any linear or
non-linear signals for different application or research scenarios. For example, the quantity of
some species may be injected into a biochemical system by a linear function of time. Therefore,
besides all the signal forms adopted from electrical circuits, an open function interface for input
signals should be incorporated into STA to satisfy various scenarios.

Besides the need of defining input signals, the way of imposing them into the system should
also be specified. In general, signals can be inputted into the system through two ways: forced
or injected. In the stochastic simulation, the former means the quantity of some species is
always determined by some external drive rather than any internal reactions. The latter, on the
other hand, deals with the situation when the external drive only adds certain number of some
species occasionally rather than dominates the whole situation. In other words, at certain time
point, the quantity of that species is determined by both the internal reactions and the external
drive. As a result, in the STA algorithm, a forced input signal can be sampled at certain time
point according to the input signal form, while an injected input signal cannot. To explain this
conclusion, we can use a very simple example. Suppose the input signal is defined as follows:
x 0 PWL(0 10 100 10), where x is the species, the first 0 is the initial quantity of x, PWL means
it is a piecewise linear signal, the following sequence of numbers 0 10 100 10 means from time
point 0 to time point 100, the signal strength is always 10.

If the signal is forced, as we have pointed out, at any time point between 0 and 100, the
quantity of species x can be sampled, which here is always 10. However, if it is injected, even
at the time point 0, we enter into a dilemma about how to sample the input signal. Even if we
assume the injection happens in no time, we can have 10 of species x at time 0, then how do
we decide the sampling at the next time point. Suppose the first reaction in which species x
gets involved with fires at time point t and 2 of species x is consumed during the reaction, then
only 10− 2 = 8 of species x is left after that reaction. However, we face a difficulty to decide



13
how many species x has been injected again so far. Is it 10 again? It could be, but without
any reasonable sense in terms of injection if we do not define the frequency of the injection.
If we always assume the injection happens with no time and is always enforced, namely the
injection is continuous and its frequency is infinity, then there is infinite number of species x
already. Through the dilemma we encounter in the example, it can be clearly seen that either the
injected signal is defined discretely by time for each injection or is defined by a function of the
total injected quantities to the time. The latter is adopted in our algorithm as it is much simpler
to deal with than the former. The subtraction of the quantity at the previous time point from the
one at the current time point would be the injected quantity between the two time points.

< SPECIES> < INITIAL>

[< FUNCTION > < FORCED | INJECTED>] [EVENT ]
Comments :
SPECIES −− species name
INITIAL −− initial quantity
FUNCTION −− input f unction de f inition
FORCED|INJECTED −− input imposed type
EVENT −− event de f inition

. (3.1)

Another useful consideration is to incorporate event-driven input signal, which means when
some event happens, the specified input signal starts. This is useful when we want to deal
with some special situations. For example, when the quantity of some species reaches 0, some
reactions cannot fire again. Then by defining an event-driven input signal, some number of
that species can be injected into the system when it becomes 0. This way we can keep some
reactions happening and study how the system behaves under such injection mechanism. An-
other example is, under some circumstance the quantity of some species might be increasing so
dramatically that even in a very tiny time step it can be reaching a very large number. If this
happens, the simulation program might get stalled or even crashed and no simulation result can
be drawn to give an idea about what happens in the system. In view of this, an event-driven in-
put signal can be defined to force the quantity of that species to some certain value representing
infinity when it goes beyond that value.

The format of the input signal for STA is summarized in (3.1), where <> means the contents
are mandatory while [] means optional. Detailed format is not presented, which can be different
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in terms of implementations.

It should be noted that, besides the three standard signal functions, the definition and eval-
uation of the free-form function can be different in terms of implementation. To standardize
it, some model formatting technology can be employed, such as SBML. Another thing should
be noticed that there may be more than one input signal defined for one species. This happens
when some event-driven input signal is added to the species besides some basic input signal.

3.2 STA algorithm

The stochastic transient analysis is based on Gillespie’s direct SSA proposed in [3]. It can also
be incorporated into the other improved stochastic simulation algorithms, such as [4]. In this
paper, the STA algorithm is described using the direct SSA for simplicity. The incorporation of
it into the other stochastic algorithms can be implemented similarly.

Suppose we have a biochemical system, in which there are n different species interacting
through m different reactions. The species types are denoted by xi(i = 1, ...,n) and their cor-
responding quantities are Xi(i = 1, ...,n). The reactions are denoted by Ri(i = 1, ...,m) and the
corresponding stochastic reaction constants are ci(i = 1, ...,m). The system state at time point
t is denoted by St = (X1(t), ....,Xn(t)). At the beginning of the simulation, the system state
is S0 = (X1(0), ...,Xn(0)), in which the quantity of each species is their initial value. To con-
tinue simulating the time-evolution of the system, the next reaction and the next time point at
which the next reaction fires must be decided. According to Gillespie’s direct SSA, they are
determined by (3.2) and (3.3) respectively.

µ−1

∑
ν=1

aν < r1a0 ≤
µ

∑
ν=1

aν , (3.2)

τ = (1/a0)ln(1/r2), (3.3)

where µ is the next reaction that fires, τ is the time elapsing from now until the next reaction
fires, r1 and r2 are two random numbers generated by a unit-interval uniform random number
generator. a0 is defined by (3.4), and aν is defined by (3.5).

a0 ≡
m

∑
ν=1

aν , (3.4)
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aν ≡ hνcν(ν = 1, ...,m), (3.5)

where

hν ≡ number o f distinct Rν molecular reactant

combinations available in the state (X1, ...,Xn)

and cν is the stochastic reaction constant for reaction Rν .
In STA, due to various types of input signals, the state of the system must be updated

according to both the previous reaction and the evaluation of input signal at current time before
the next reaction and the time point of the next reaction are calculated. From (3.1), we know
that an input signal can consist of four parts: initial value, input function, imposed type, and
event. If the input signal of a species only has the first part , i.e. initial value, then the update
only considers the effect of the previous reaction, as described in original SSA. If the second
and third parts are attached to the signal, then the way of update will depend on the imposed
type of the signal. For the forced signal, the signal value is sampled from the function defined
in second part at the current time point and the effect of the previous reaction takes no effect.
While for the injected signal, since the injection is defined as a function of total injected quantity
to time, so it must be calculated by subtracting the function value at the time point of previous
reaction which has considered the injection effect from the function value at the current time
point. If we use tp representing the time point of previous reaction which has considered the
injection effect and tc representing the current time point and the evaluation of input function is
fp at time tp and fc at time tc, then the number of species injected into the system since previous
reaction which has considered the injection effect is represented by (3.6).

in jected number = f loor( fc)− f loor( fp). (3.6)

In (3.6), function floor(x) returns the largest integral value that is not greater than x. If the
injected number is greater than 0, then the current reaction will consider injection effect, which
means for the next reaction, the previous reaction which has considered the injection effect will
become the current reaction. Otherwise it will remain the old one.

Once the injected number of an input signal for the next reaction is calculated, then simply
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adding the injected number to that species as well as considering the effect of previous reaction
will get the updated quantity of the species.

If the fourth part event appears in the definition of the input signal, then a forced or injected
signal will be defined inside the event and applied only when the event happens. The input
function of the signal will be evaluated with the time when the event happens as the start time
0.

Due to the stochasticity of biochemical systems, sometimes multiple trials of simulation
must be performed to get more accurate results. Under such situation, simply recording system
state at each time point for all the simulation trials is not a good solution for transient analysis.
Because with trails increasing, the data need to be recorded are also increasing proportionally.
As a result, the program may slow down a lot or even run out of memory when the the number
of trails is beyond certain level. To overcome this issue, we propose the following data structure
which only consumes constant of memory no matter how many trials are performed.

Suppose total time of transient simulation performed is T , and the total time steps drawn in
the final result curve is set to N. Then we separate T into N time segments equally, which are
[(i−1)T/N, iT/N](i= 1, ...,N). For each time segment, a general state is attached, say, S(i)(i=
1, ...,N). Since in stochastic simulation the sequence of fired reactions and corresponding time
points vary with trails, the time points and corresponding states must be considered separately
for each trial. If the current time point falls in ith time segment, then the corresponding state is
added up into the ith general state S(i). At the end of simulation, each general state is averaged
being divided by total number of simulation steps in the corresponding time segment. The final
transient results can be plotted by using N general states at N time points. The data structure is
shown in Fig. 3.1.

 . . . 
T/N 2T/N0 (N−1)T/N (N−1)T/N T

S 1 S 2 NSN−1S

Figure 3.1: Time segmenting for multi-trial STA.
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It is worth being noted that since the judgment of which time segment the current time

point falls in happens at each simulation step, how to get the time segment index rapidly really
matters in the simulation performance. Another thing should be noticed is that when there is
no probability for some reaction to fire, namely the quantity of some reactant is not enough
for the reaction to fire one time, it does not necessarily mean that the reaction will not be fired
any more. Because the input signal of that deficient reactant may be forced or injected into the
system again. All these are just some programming skills and they are not discussed in detail
here.

To summarize, the pseudo codes for STA algorithm are listed as follows, which only de-
scribe the main logic while omit the initialization and some details.

f o r i =1 t o t r i a l s
t ime = 0
w h i l e t ime <=T

s t a t e = s a m p l e I n p u t ( t ime , s t a t e )
segment no = getTimeSegment ( t ime )
S e g S t a t e [ segment no ] += s t a t e
SegCount [ segment no ] ++
n e x t r e a c t i o n = ge tS S ANextReac t ion ( s t a t e )
t a u = getSSATau ( s t a t e )
s t a t e = u p d a t e S t a t e ( s t a t e )
t ime += t a u

end w h i l e
end f o r

f o r i =1 t o t i m e s e g m e n t s
S e g S t a t e [ i ] /= SegCount [ i ]

end f o r



Chapter 4

Stochastic Transient Analysis of Lotka
Model

In this section, we first apply our transient analysis to a simple biochemical model, Lotka.
Through the simulation results, we demonstrate that how our approach can help bring more
insights into the dynamics of the system.

4.1 Lotka Model

In [3], the author has performed several different stochastic analyses to the Lotka model, which
is described by a set of coupled reactions in (4.1). However all of the analyses for Lotka
model in [3] are performed by using different parameters or adding some extra reactions. Some
conclusions are even made only through logical deductions. For instance, the author claims
that ”no matter what the state of the system is initially, it will eventually wind up in either the
state (Y1=0, Y2=0) or the state (Y1=∞, Y2=0).” However no simulation results are provided to
support such claim. In the following simulation process, we will show how to perform relevant
transient analysis to support such claim and how we are going to do more various transient
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analyses to help us understand this model better.

x+ y1
c1

x+ 2y1

y1 + y2
c2

2y2

y2
c3

z

. (4.1)
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Figure 4.1: Transient analysis of Lotka model with time from 0 to 20.

4.2 Analyzing Lotka Model by STA

First let’s perform the simulation to the model as done by the author of [3]. The result is shown
in Fig. 4.1. Table B.1 in Appendix B describes the initial quantity of all species in the model,
while the reaction rates are listed in Table B.2 in Appendix B.

Then we try to figure out what the simulation data would be for the situation when the
system finally enters the state (y1=0, y2=0). To achieve this goal, we can simply prolong the
simulation time. The result is shown in Fig. 4.2.

Now, to simulate how the system gets into the state (y1=∞, y2=0), we cannot just prolong
the simulation time or change the random number series. Because when y1 was approaching to
infinity, the time step for each fired reaction would be approaching infinitesimal, which means
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Figure 4.2: Transient analysis of Lotka model with system entering the state (y1=0, y2=0).
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Figure 4.3: Transient analysis of Lotka model with system entering the state (y1=∞, y2=0).

you would get nearly infinite reactions fired per time unit. The simulation data will simply blow
up and crash your program. However in our transient analysis method, we can work around this
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issue by defining event. If we constrain the output of y1 to be 20,000 (approximating infinity)
through event, i.e. forcing it to be 20,000 if beyond, we will get the waveform as in Fig. 4.3.

Suppose there is some mechanism from external which makes y1 stay at 1000 constantly.
Fig. 4.4 illustrates the simulation results with this forcing input for y1. Interestingly we observe
that y2 still finally gets to zero, even though it costs much more time.
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Figure 4.4: Transient analysis of Lotka model with forcing input for y1.

According to the deterministic steady-state analysis, the fluctuating center of y2 is propor-
tional to x, while y1’s does not change with x. This can be verified through the simulation results
depicted in Fig. 4.5, where x is set to be a pulse function of time: PULSE(10 30 50 0 0 50 100),
as displayed in the top graph of Fig. 4.5. Here threshold events are defined: once y1 or y2

reaches zero, more of corresponding species is injected to keep the fluctuations going.



22

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

time

nu
m

be
rs

 o
f x

 m
ol

ec
ul

es

 

 

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

time

nu
m

be
rs

 o
f y

1 
m

ol
ec

ul
es

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

time

nu
m

be
rs

 o
f y

2 
m

ol
ec

ul
es

Figure 4.5: Transient analysis of Lotka model with pulse input for x.



Chapter 5

Verification of the Design of
Biochemical Logic Gates

In this section, we apply STA to the logic gates design in biochemical system. First we employ
an inverter model proposed in [20] and use the stochastic way to simulate the transient behavior
of it. Then based on the inverter model and a simple AND model we propose, we create models
for some other logic gates such as NAND, OR and XOR. We simulate all the models using STA
to verify the correctness of our design.

5.1 Biochemical Inverter

In gene regulation systems, some features exhibit strong logic gates behavior. For instance,
RNA polymerase will stop transcribing the gene if there exists a repressor protein which binds
to the operator of the gene’s promoter. If you consider the concentration of the gene and the con-
centration of the repressor as two signals, then the relationship between them is like an inverter.
In [20], authors present a set of coupled chemical reactions to model such characteristics. The
chemical reaction model is described in (5.1). Extra reaction is needed to maintain the quantity
level of input species a, which is not listed here. And the initial species quantities and reaction
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rates are listed in Table B.3 and Table B.4 respectively in Appendix B.

a+a
Kdim(a)

a2 a2
Ksngl(a)

a+a

z+ z
Kdim(z)

z2 z2
Ksngl(z)

z+ z

gz+a2
Krprs(a2)

gza2 gza2
Kdis(a2)

gz+a2

gza2+a2
Krprs(a4)

gza4 gza4
Kdis(a4)

gza2+a2

a
Kdec(a)

ø a2
Kdec(a2)

ø

z
Kdec(z)

ø z2
Kdec(z2)

ø

gza2
Kdec(ga2)

gz gza4
Kdec(ga4)

gza2

mrnaz
Kdec(mrna)

ø

gz+ rnap
Kxscribe

gz+ rnap+mrnaz

mrna2+ rnaa
Kxlate

mrnaz+ rrna+ z

(5.1)

In [20], authors don’t mention if they analyze the model using deterministic or stochastic
approach. But in a late paper [21], which has the same first author as [20], authors claim that
they are using deterministic way. Although they argue that in some sense deterministic model
is equivalent to stochastic one, we will be using our stochastic transient analysis to analyze
the inverter they have proposed and a little more logic gates we design based on their inverter
for biochemical systems. By using stochastic analysis, we think it will bring more accurate
results especially for cell-scale systems as stochastic model has a firmer physical basis than
deterministic model.

To analyze the inverter using STA, we first provide logic ’0’ at the input, i.e. provide
no species of a. According to the feature of inverter, we get logic ’1’ at the output, which
is actually represented by the quantity of species z. Through simulation, we get the quantity
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representing logic ’1’ around 12. To impose logic ’1’ at the input, in [20], authors claim that an
externally-imposed drive is needed to increase the quantity of species a. Based on the strength
of the external drive, a will finally get into an equilibrium with a LOW or HIGH signal range.
Therefore the transfer curve of the inverter can be drawn by changing the external drive from
weak to strong gradually. Here we are not going to analyze the characteristic curve of the
inverter because it can be easily done by sweeping the input signal. We are more interested in
the transient time behavior of the inverter. So we provide a forced pulse input signal for the
inverter as described in the top graph in Fig. 5.1. We simulate the model using STA, and plot
the results in the bottom graph in Fig. 5.1. From the waveforms in Fig. 5.1, it can be clearly
seen that it is exactly the transient behavior of an inverter. Namely when the input signal is low,
the output signal is high and vice versa.

x+ y
c1

x+ y+a a
c2

ø

a+a
Kdim(a)

a2 a2
Ksngl(a)

a+a

z+ z
Kdim(z)

z2 z2
Ksngl(z)

z+ z

gz+a2
Krprs(a2)

gza2 gza2
Kdis(a2)

gz+a2

gza2+a2
Krprs(a4)

gza4 gza4
Kdis(a4)

gza2+a2

a
Kdec(a)

ø a2
Kdec(a2)

ø

z
Kdec(z)

ø z2
Kdec(z2)

ø

gza2
Kdec(ga2)

gz gza4
Kdec(ga4)

gza2

mrnaz
Kdec(mrna)

ø

gz+ rnap
Kxscribe

gz+ rnap+mrnaz

mrna2+ rnaa
Kxlate

mrnaz+ rrna+ z

. (5.2)
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Figure 5.1: Stochastic transient analysis of the INVERTER.
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5.2 Some Other Logic Gates

In [20], the approach to create an NAND gate is to ”wire-OR” the outputs of multiple inverters
by assigning them the same output gene. However no reaction model is given for the NAND
gate. So here, we will design some more logic gates with reaction models and use STA to verify
our models.

First according to the feature of the AND gate, we design the reaction model of it as in (5.3).
The reaction constants c1 and c1 can be adjusted to get the same logic 1 quantity level as the
inverter’s. To verify the model, we design the input signals as two forced pulse signals with the
same period but different phase, as in the top graph in Fig. 5.2. The simulation result is plotted
in the bottom graph in the same figure. As we see from the graphs, the model does exhibit an
AND gate. The reaction rates of the AND gate are listed in Table B.5 in Appendix B.

x+ y
c1

x+ y+ z

z
c2

ø
. (5.3)

Now we have the AND gate. By simply connecting an inverter to the output of the AND
gate, we get an NAND gate. Here the output of the AND gate acts as the external drive for
the input of the inverter. To make it clearer, we list the reaction model of NAND gate in (5.2).
Please note that in the NAND gate model, the output species of the AND gate is the same as the
input species of the inverter. Using the same input signals as for AND gate simulation, we get
the simulation results for NAND gate depicted in Fig. 5.3.

We know that an OR relationship can be represented by three NOTs and an AND. Namely
if z= x+ y, we can rewrite it as z= x · y. So first we connect x and y to an inverter respectively.
Then connect the outputs of the two inverters to an AND gate. Finally connect the output of the
AND gate to an inverter again. Then the output of the last inverter is the output of the OR gate,
namely z. There are 53 chemical reactions getting involved in the whole OR gate model, which
we are not listing here. But we describe the simulation results of the OR gate in Fig. 5.4, using
the same input signals as in simulations of AND and NAND gates.

Similar to OR, an XOR relationship, z = x⊕ y, can be rewritten as z = x · ȳ+ y · x̄. There
are two NOTs, two ANDs and one OR relationships in the XOR model, which consists of total
91 chemical reactions. If we use the same input signals as in the simulations of AND, NAND
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Figure 5.2: Stochastic transient analysis of the AND gate.

and OR gates, we will get the results plotted in Fig. 5.5. From the waveform, we can see that
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Figure 5.3: Stochastic transient analysis of the NAND gate.

we almost get a mess at the output of XOR gate. The reason why this happens is simply due
to the gate delays. It can be easily seen that the output does not have enough time to reach the
HIGH level (logic ’1’) when the input signals change to their next states to make the output
go down again. This situation means the frequency of the input signal is too high for the XOR
gate to work properly. To verify our judgment here, we slow down the frequency of the input
signal to the quarter of the original one and do the simulation again. Now we can see the correct
waveform of the XOR gate as plotted in Fig. 5.6.
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Figure 5.4: Stochastic transient analysis of the OR gate.
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Figure 5.5: Stochastic transient analysis of the XOR gate.
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Figure 5.6: Stochastic transient analysis of the XOR gate with lower frequency.



Chapter 6

A Simplified Inverter and A 3-stage
Ring Oscillator

6.1 Design of A Simplified Inverter

In Chapter 5, we have simulated a biochemical inverter proposed in [20] using STA. The authors
of [20] presents the model of the inverter based on the biochemical experiment and analysis. It
is quite complex, composed by seventeen chemical reactions. It is not easy to apply such logic
element into a digital circuit. And there will be too many reactions even in a small circuit,
as we have demonstrated in Chapter 5 that an XOR gate based on such inverter consists of
91 reactions. Moreover, there is no clear approach to adjust the reaction rates in order to get
various inverts with different thresholds (the ideal switch point of inverter), which are important
for inverters to be capable of fitting into different situations where the numbers of molecules
representing logic ”1” are different.

In view of the complexity of the inverter presented in [20], we propose a simplified inverter
with only five reactions. Our goal here is not to demonstrate how to design a good biochemical
inverter, but to show how STA can be applied to do analysis and verification during the design
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process. The reaction set of the proposed inverter is listed in (6.1).

i
k1

i+ c

t
k2

t+o

c+o
k3

ø

c
k4

ø

o
k5

ø

. (6.1)

In reaction set (6.1), i is the input species, s is the species which represents the threshold
of the inverter. The mechanism of the inverter is described as follows: when the quantity of
input species i is much less than that of threshold species s, the quantity of product c will be
much less than that of product o, as long as k1 = k2 in the first two reactions. Since c and o are
annihilating each other in the third reaction, c will be consumed almost immediately after being
created in the first reaction while o will keep increasing in quantity. Of course, k3 should be
equal or close to k1andk2. The fourth and fifth reactions are for balancing the quantities of c and
o, ensuring that both of them would be kept at certain level of quantity if they are dominating in
the third reaction. In this case, the fifth reaction causes o to reach equilibrium without keeping
increasing. The quantity level in the equilibrium should be the high level representing logic ”1”.
Therefore, with a low level input (logic ”0”), a high level output (logic ”1”) is generated. On
the other hand, when the input i is on a high level, c will be dominating in the third reaction. As
a result, o will reach a low level.

According to SSA, the firing chance of a reaction is proportional to the product of its reac-
tants and the reaction rate. Thus, if we have k1 = k2 = k3 = 2k4 = 2k5, and set the threshold
of inverter at T , then we will get an inverter with low level quantity approximating zero and
high level quantity approximating 2T . Due to the stochasticity of biochemical reactions and the
dynamic interaction between reactions, we are not expecting a perfect inverter with this design.
But we do not analyze some characteristics of this inverter here, such as noise margin, trans-
fer curve, delay etc. Those are not our emphasis of this thesis. We want to demonstrate the
verification of the inverter using STA.

If we set threshold T = 50, and set the reaction rates according to Table B.6 in Appendix
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Figure 6.1: A simplified inverter.

B, we can get the stochastic transient simulation result of the inverter shown in Fig. 6.1.
To verify if the logic ”1” level varies with threshold, we have T set to 100, and do the

simulation again. The result is displayed in Fig. 6.2. It can be clearly seen that the level of logic
”1” has reached about 200.
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Figure 6.2: A simplified inverter with different threshold.
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6.2 Simulation of A 3-stage Ring Oscillator

As we know, if odd number (> 1) of inverters are connected one by one in series and the output
of the last inverter is hooked with the input of the first inverter to make a loop, then a ring
oscillator can be created, as shown in Fig. 6.3, which has three inverters (is called 3-stage ring
oscillator).

Figure 6.3: A 3-stage ring oscillator.

i
k1

i+ c t
k2

t+o

c+o
k3

ø c
k4

ø

o
k5

ø o
k1

o+ c1

t1
k2

t1+o1 c1+o1
k3

ø

c1
k4

ø o1
k5

ø

o1
k1

o1+ c2 t2
k2

t2+ i

c2+ i
k3

ø c2
k4

ø

i
k5

ø

. (6.2)

To verify our design of the simplified inverter, we apply the proposed inverter to build a
3-stage ring oscillator according to Fig. 6.3. The reaction set of the oscillator is shown in (6.2)
, which is simply composed of three inverters, only the output of the last inverter is the same
species as the input of the first one. Simulate the oscillator, we get the waveform displayed in
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Fig. 6.4.
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Figure 6.4: A 3-stage biochemical ring oscillator.
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Apparently, this is not a good waveform. Due to the small delay of the inverter and stochas-

ticity of the system, the period of it seems too small in terms of the simulation time scale and the
amplitude of the waveform varies too much. To make it perform better, a delay is introduced
into the inverter and the corresponding reaction set of the oscillator is changed to (6.3). The
reaction rates are listed in Table B.7 in Appendix B. Simulate it again, we get the waveform
with larger period and much less variation in amplitude, as shown in Fig. 6.5.

Again we want to emphasize that the purpose of presenting our preliminary design here is
not to show our capability of designing a simplified biochemical inverter, but to demonstrate
that STA can be a powerful analysis and verification tool for biochemical research, especially
for biochemical digital circuits.
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Figure 6.5: A 3-stage biochemical ring oscillator with longer period and less amplitude varia-
tion.



Chapter 7

Conclusion and Discussion

Since Gillepsie proposed stochastic simulation algorithm for biochemical system about thirty
year ago, there hasn’t been any systematic way reported to do transient analysis for biochem-
ical system based on Gillepsie’s SSA. In this thesis, we present such a systematic approach,
stochastic transient analysis for biochemical system. We borrow the idea of transient analysis
from electrical circuits, classifying the input signals into categories. Then we add extra pro-
cessing in SSA to get the time response of the system to the input signals. Simulations to Lotka
model and some biochemical logic gate designs show that the proposed stochastic transient
analysis can yield new insights into the dynamics of biochemical systems. Specifically it can
be used to analyze and verify the design of biochemical digital circuits.

As this thesis is focusing on the simulation approach, no further exploration has been done
to analyze the delay, noise margin and other features of the designed logic gates or other digital
circuits. This can be a research direction in the future, for which STA will act as an indispens-
able tool. Besides, we are currently working on the incorporation of STA to BioSPICE [19], an
open source software package for modeling and simulation of biochemical systems.
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Appendix A

Acronyms

A.1 Acronyms

Table A.1: Acronyms

Acronym Meaning

ODE Ordinary Differential Equation
DAE Differential Algebraic Equation
ACM Association for Computing Machinery
IEEE Institute of Electrical and Electronics Engineers
SSA Stochastic Simulation Algorithm
STA Stochastic Transient Analysis
MNA Modified Nodal Analysis
PWL Piece-Wise Linear
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Appendix B

Reaction Parameter Tables

B.1 Reaction Parameter Tables

Table B.1: Species Initial Quantities in Lotka Model

Species Initial Quantity

x 10
y1 1000
y2 1000
z 0

Table B.2: Reaction Rates in Lotka Model

Rate Value

c1 1
c2 0.01
c3 10
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Table B.3: Species Initial Quantities of Weiss’ Inverter

Species Initial Quantity

a 0
a2 0
z 0
z2 0
gz 85
gza2 0
gza4 0
mrnaz 0
rnap 8000
rrna 1000

Table B.4: Reaction Rates of Weiss’ Inverter

Rate Value

Kdim(a) 8.333
Ksngl(a) 0.1667
Kdim(z) 8.333
Ksngl(z) 0.1667
Krprs(a2) 66.7
Kdis(a2) 0.2
Krprs(a4) 333.3
Kdis(a4) 0.25
Kdec(a) 0.5775
Kdec(a2) 0.5775
Kdec(z) 0.5775
Kdec(z2) 0.5775

Continued on next page
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Table B.4 – continued from previous page
Rate Value

Kdec(ga2) 0.2887
Kdec(ga4) 0.2887
Kdec(mrna) 2.0
Kxscribe 0.0001
Kxlate 0.03

Table B.5: Reaction Rates of AND gate

Rate Value

c1 1
c2 12

Table B.6: Reaction Rates of Simplified Inverter

Rate Value

k1 1
k2 1
k3 1
k4 0.5
k5 0.5
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Table B.7: Reaction Rates of 3-stage Ring Oscillator

Rate Value

k1 1
k2 1
k3 1
k4 0.5
k5 0.5
k6 0.5
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