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MHC Class | proteins

Immune surveillance of cells - detect foreign material
Cell surface protein that presents peptides

Peptide is held in a groove, with ends in binding pockets
Mechanics of binding depend on MHC variant

Highly polymorphic A

Applications - vaccine
design, cancer neoantigen,
viral disease severity
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CD8* T cell

Antigen presentation pathway

TCR
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Neural Networks Prediction Tools

State-of-the-art tools: **r » T
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e NetMHC-4.0 o
e NetMHCpan-4.1 MHC Class |

Differences - MHC sequence, training data

Binding score in training data:
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e Binding Affinity - continuous
e FEluted Likelihood - discrete

Neural Network Binding Score in
tool interval [0,1]

Massimo Andreatta, Morten Nielsen, Gapped sequence alignment using artificial neural networks: application to the MHC class | system, Bioinformatics, Volume 32, Issue 4, 15 February 2016, Pages
511-517, https://doi.org/10.1093/bioinformatics/btv639
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Two different data analyses

e Trainingdata
e Human Proteome data

We only analyzed 9-mers, which show the strongest affinity for MHC Class |, and
HLA-A*02:01 (A2), the most frequent MHC allele supertype



Training Data flowchart

Entire training data for Filter for 9-mers with HLA-A*02:01 (A2) only
NetMHCpan-4.1

TRN Filter for strong binders above NetMHC threshold

Filter for predicted strong binders

NetMHC-4.0

TRN Filter for strong binders above NetMHCpan threshold

Filter for predicted strong binders

NetMHCpan-4.1

Training data (TRN)

NetMHC Threshold
filter (NTF)

NetMHC Strong Binders
(NSB)

NetMHCpan Threshold
filter (PTF)

NetMHCpan Strong
Binders (PSB)



Training Data Scores

Sorted Scores for all A2 9-mers

' —— Training scores
0.75 —— NetMHC-4.0 scores

NetMHCpan-4.1 scores
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Human Proteome Data flowchart

Entire human proteome Randomly sample 100 proteins, break into 9-mers = Sampled Human Proteome
from Uniprot (SHP)
Filter for predicted strong binders i
NetMHC-4.0 NetMHC(I—'lll:_er;;n Binders
SHP
Filter for predicted strong binders NetMHCpan Human

NetMHCpan-4.1 Binders (PHB)



Human Proteome Scores

Sorted Scores for sampled human 9-mers
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Delving into Hydrophobicity

Do either neural network tool utilize biochemical attributes in their

0

o
predictions?
e Theone we are most interested in is hydrophobicity. Why?
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Moon Hydrophobicity Scale

e Models the polarity of the sidechain for an amino acid
e Hydrophobicity of peptide = sum of scores for each amino acid in it
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=0.8+1.15+08+0.63+0.79+1.26+0.79+1.26 +1.26
=8.74

Moon, C. Preston, and Karen G. Fleming. "Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers." Proceedings of the National Academy of Sciences 108.25 (2011):
10174-10177.



Analysis of hydrophobicity

e For each set of peptides, calculate each peptide’s hydrophobicity

e Statistical analysis across sets -
o  Graphical
o Mean+STD
o 2-sampleT test

TRN: Training data

NTF & PTF: Strong binders in training data according to NetMHC and NetMHCpan
NSB & PSB: Predicted strong binders according to NetMHC and NetMHCpan
SHP: Sample Human Proteome data

NHB & PHB: Predicted strong binders according to NetMHC and NetMHCpan



Results - NetMHCpan on training data
Histogram of Hydrophobicity of 9-mers
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Results - NetMHCpan on training data
Histogram of Hydrophobicity of 9-mers
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Results - NetMHCpan on training data
Histogram of Hydrophobicity of 9-mers
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Results - NetMHC on training data
Histogram of Hydrophobicity of 9-mers
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Results - NetMHC on training data
Histogram of Hydrophobicity of 9-mers
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Results - NetMHC on training data

Histogram of Hydrophobicity of 9-mers
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Results - Human Proteome
Histogram of Hydrophobicity of 9-mers
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Results - Human Proteome
Histogram of Hydrophobicity of 9-mers
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Results - Human Proteome
Histogram of Hydrophobicity of 9-mers
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Conclusion

e NetMHC predicts strong binders to A2 to be more hydrophobic
o Averageof 3.45vs 2.75 for NSB vs PSB
o Average of4.51vs 2.78 for NHB vs PHB
e Thisbiasisnotreflected in
o Training data
o  Prediction by NetMHCpan on training data
o  Prediction by NetMHCpan on the sample human proteome
o Confirmed by statistical analysis for p value threshold of 0.0001

The training data for NetMHCpan is not neutral in hydrophobicity - shift by 1



Conclusion

e Neural Network tools are useful tools for pMHC prediction, but vulnerable to
false positives

e Neural Network tools do not utilize biochemical attributes such as
hydrophobicity in their calculation

e Improvements -
o Hydrophobicity as a data feature
o Better training data
o Post processing filter



