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Abstract— Markov chains are commonly used in 

numerous signal processing and statistical modeling 

applications. This paper describes an approach to implement 

any first-order Markov chain using molecular reactions in 

general and DNA in particular. Markov chain consists of two 

parts: a set of states, and state transitions. Each state is 

modeled by a unique molecular type, referred as a data 

molecule. Each state transition is modeled by a unique 

molecular type, referred as a control molecule, and a unique 

molecular reaction. Each reaction consumes data molecules of 

one state and produces data molecules of another state. The 

concentrations of control molecules are initialized according 

to the probabilities of corresponding state transitions in the 

chain. The steady-state probability of Markov chain is 

computed by equilibrium concentration of data molecules. We 

demonstrate our method for the Gambler’s Ruin problem as 

an instance of the Markov chain process. Both stochastic 

chemical kinetics and mass-action kinetics validate the 

computed probabilities using the proposed model. The 

molecular reactions are then mapped to DNA strand 

displacement reactions. The error in the probability of ruin 

computed by the proposed model is shown to be less than 1% 

for DNA strand displacement reactions.   

Keywords—molecular computation; Markov chain; Gambler’s 

ruin problem, molecular reaction; DNA strand-displacement 

I.  INTRODUCTION  

With the advantage of a well-defined theory and extensive 
simulation software tools, molecular reactions or chemical 
reaction networks (CRNs) have been used for modeling in 
different applications. For example, there has been a groundswell 
of interest in molecular computations in recent years [1-6]. Since 
1994, several approaches have been investigated for molecular 
computation; these include solving: NP-computational and 
combinatorial problems such as Hamiltonian path problem [1] and 
finding maximal clique problem [7], computing of deterministic 
functions and algorithms [8],[9], implementation of logical 
functions [10]-[14], and signal processing [15].  

This paper, for the first time, presents a new methodology for 
modeling any first-order Markov chain by a set of chemical 
reactions in order to compute the steady-state probabilities of its 
states. The produced set of molecular reactions is implemented by 
DNA strand displacement reactions. Markov chain has been 

frequently used for modeling and analyzing systems of chemical 
reactions [4],[16],[17]; However, this paper addresses the reverse 
problem, i.e., modeling Markov chain  and computing its steady-
state probabilities by a system of chemical reactions. Since 
Markov processes are commonly used in numerous processing and 
statistical modeling applications, a systematic method for 
synthesizing Markov chains with DNA strand displacement 
reactions leads to a systematic method for implementing these 
applications using DNA. 

This paper presents a systematic method for implementing 
first-order Markov chain processes using molecular reactions. 
Each state in the Markov chain is modeled by a unique data 
molecular type and each state transition is modeled by a molecular 
reaction and a unique control molecule. Data molecule for each 
state or control molecule for each state transition is distinguishable 
from molecules corresponding to other states or state transitions. 

All the reactions have the form of 𝐶𝑖𝑗 +  𝐷𝑖  → 𝐶𝑖𝑗 + 𝐷𝑗, where 𝐶𝑖𝑗 

is the control molecule that facilitates transition from state 𝑖 to 𝑗 
and 𝐷𝑖 and 𝐷𝑗 are data molecules for states 𝑖 and 𝑗, respectively. 

The final concentration of data molecules related to each state 
determines the probability of that state. Since all of the reactions 
are bimolecular, the model can be mapped to a set of toehold-
mediated DNA strand displacement reactions according to prior 
work [5]. 

In Section II we briefly review two models for a CRN: 
stochastic chemical kinetics and mass-action kinetics. A brief 
review of Markov chain process is presented in Section III. 
Section IV presents the proposed methodology for modeling 
Markov chain by molecular reactions. In Section V the proposed 
model is analyzed using stochastic as well as mass-action kinetics. 
Section VI explains mapping of the proposed model to DNA 
strand displacement reactions and finally Section VII concludes 
the paper. 

II. MODELING BY MOLECULAR REACTIONS 

This section describes the methodology of constructing a 
model for Markov chain process using molecular reactions. This 
model can be used to compute the steady-state probability of each 
state in the Markov chain diagram. The methodology has two 
parts: initialization and transition reactions. 

Initialization: This stage consists of initializing two groups of 
molecules: data molecules and control molecules. 

Data molecule for each state of Markov chain is a unique type 
of molecule assigned to that state. The initial quantity for each 
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data molecule, except the start state, is zero. For the start state the 
initial value can be any large nonzero number; however, larger 
the initial value, more accurate the probability estimates are. 

Control molecules are used to control transformation of data 
molecules of one state to data molecules of other states according 
to the transition probabilities in the Markov chain diagram. A 
unique type of molecule is devoted for each state transition in the 
chain. The quantities of control molecules are time invariant and 
can be determined according to the probabilities related to their 
corresponding transition in the chain; the ratio of quantity of a 
control molecule over total quantities of all control molecules in a 
state equals the probability of corresponding transition. 

In general, the number of unique molecular types in our 
model is the sum of the number of states and the number of 
transitions in the Markov chain. 

 Transition Reactions: The transition reactions determine how 
data molecules transfer in order to implement the desired Markov 
chain. There is a transition reaction for each transition in the 
chain. This reaction transfers data molecules in the source state of 
transition to the data molecules in the destination state. Each 
transition reaction uses a control molecule for transferring data 
molecules. However, transition reactions should not change the 
concentration of control molecules. Therefore, if a control 
molecule is used as a reactant in a reaction, it should be also be a 
product of the reaction.  

To illustrate our methodology we explain the molecular 
model for gambler problem as an instance of Markov chain[21]; a 
gambler starts with i dollars and plays game of chance in each 
step, either increasing his money by $1 or decreasing by $1. He 
stops when money is gone, RUIN, or when he has N dollars, WIN. 
Assuming the chances of winning, 𝑤, and loosing, 𝑙, for all states 
to be identical, what’s the probability of ruin? 

Fig. 1 shows a 4-state (𝑁=3) gambler problem with 𝑤 = 0.3 
and 𝑙 = 0.7. Theoretical ruin and win probabilities for this 
example are 0.886076 and 0.113924, respectively [21]. 

RUIN A B WIN

0.3

0.7 0.7

0.3$0 $1 $2 $3

 

Fig. 1. State diagram for the gambler problem with N=3. 

In order to design its molecular reactions first we devote a 
data molecular type to each state: Molecule 𝑅𝑈𝐼𝑁 for ruin state, 
𝐴 and 𝐵 for intermediate states, and 𝑊𝐼𝑁 for win state. Suppose 
we want to compute P1, i.e., the probability of ruin if gambler 
starts the game with $1. In this case, state 𝐴 is the start state. 
Therefore, the initial value of its data molecule, 𝐴, is nonzero, 
while the other states have data molecules with zero initial 
values. We consider 100 as the initial value of 𝐴. 

Control molecules 𝐴1 and 𝐴2 are assigned to the output 
transitions of state 𝐴. Similarly, 𝐵1 and 𝐵2 are assigned to the 
transitions from state 𝐵. Because 𝑤=0.3 and 𝑙=0.7 for this 
example, we choose initial values as [𝐴1] = [𝐵1] = 30 and 
[𝐴2] = [𝐵2] = 70. One should notice that despite the exact 
concentrations for the control molecules, they need to conform to 
(1). 

 𝑤 =
[𝐴1]

[𝐴1]+[𝐴2]
=

[𝐵1]

[𝐵1]+[𝐵2]
                 

 𝑙 =
[𝐴2]

[𝐴1]+[𝐴2]
=

[𝐵2]

[𝐵1]+[𝐵2]
                       (1) 

The final step is to write the molecular reactions related to 
each state transition. Reactions (2) and (3) represent output 
transitions for states A and B, respectively. These reactions with 
the initial concentrations for each molecular type are the proposed 
molecular model for the gambler problem in Fig. 1. 

            𝑅1:      𝐴 + 𝐴1 → 𝐵 + 𝐴1  

     𝑅2:        𝐴 + 𝐴2 → 𝑅𝑈𝐼𝑁 + 𝐴2      (2) 

     𝑅3:     𝐵 + 𝐵1 → 𝑊𝐼𝑁 + 𝐵1        

  𝑅4:        𝐵 + 𝐵2 → 𝐴 + 𝐵2     (3) 

Thus, the gambler problem with 𝑁=3 can be modeled by eight 
types of molecules and four molecular reactions. Here the 
transition probabilities for states 𝐴 and 𝐵 are similar and control 
molecules 𝐴1 and 𝐴2 can be used for both states and 𝐵1 and 𝐵2 
can be omitted. 

III. ANALYSIS OF THE PROPOSED MOLECULAR MODEL 

According to both stochastic chemical kinetics [18],[19] and 
mass-action kinetics [20], in this section the proposed molecular 
model is analyzed. We analyze the molecular model for the 4-state 
gambler problem shown in Fig. 1. 

A. Stochastic Model 

If we only consider state 𝐴, there are two ways for data 
molecules 𝐴 to transfer from this state; they can participate either 
in reaction 𝑅1, or 𝑅2. Based on the stochastic kinetics the 
probability of participating in reactions 𝑅1 and 𝑅2 can be 
computed as (4) and (5), respectively. Since the quantity of 𝐴1 
and 𝐴2 are time invariant, the probabilities remain constant. 

𝑃(𝑅1) =
(
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If all the states are considered, all of the four reactions can be 
fired and their probabilities are computed as (6). 
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For the four probabilities in (6) we assume that at each step at 
least one reaction can be fired. In other words, 𝑎(𝑎1 + 𝑎2) +
𝑏(𝑏1 + 𝑏2) ≠ 0. The number of molecules 𝑅𝑈𝐼𝑁, 𝐴, 𝐵, and 𝑊𝐼𝑁 
are considered as the states of the system, 𝑆 = (𝑟𝑢𝑖𝑛, 𝑎, 𝑏, 𝑤𝑖𝑛). 
Depending on which reaction is fired, 𝑆 changes after each step. 
Fig. 2 shows the graph for the first two steps of the example in 
Fig. 1. One should keep in mind that the total number of data 
molecules in each state is constant. 
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Fig. 2. First two steps of updating the state of molecular model for 

Fig. 1. 

As another interpretation for the model we consider each 
molecule in the system. The molecule transforms to a molecule 
either in left state or right state with the probabilities of 0.3 or 0.7, 
respectively. Therefore, we can interpret each single molecule in 
the system as an instance of the gambler’s play. 

The Monte Carlo simulation is used for validating the model. 
The goal is to compute the ruin probability if gambler arrives to 
play with $1. Therefore, the simulation starts with the initial state 
𝑆 = (0,100,0,0) and stops whenever no more reaction can be 
fired. The simulation is repeated 10

6
 times. Fig. 3 shows the 

simulation results.  The horizontal axis represents the number of 
molecules and the blue (red) line represents the number of times 
the simulation ends up with those numbers of molecules in ruin 
(win) state. Ruin probability can be calculated as formulated in 
(7). The mean values of the ruin and win distributions in Fig. 3 
are used as the number of molecules. If we simulate with a larger 
initial value of data molecule, the probabilities can be computed 
more accurately. Table I shows the probabilities obtained using 
different initial values for data molecule 𝐴. Note that the 
accuracy improves with increase in the initial value of 𝐴. 

𝑃1 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑖𝑛 𝑟𝑢𝑖𝑛 𝑠𝑡𝑎𝑡𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑖𝑛 𝑟𝑢𝑖𝑛 𝑎𝑛𝑑 𝑤𝑖𝑛 𝑠𝑡𝑎𝑡𝑒𝑠
         (7) 

B. Mass-action Kinetics 

Based on the mass-action law, time variation of data 
molecules can be represented by the ODEs (8) 

𝑑[𝐴]

𝑑𝑡
= −𝑘. [𝐴1][𝐴] − 𝑘. [𝐴2][𝐴] + 𝑘. [𝐵2][𝐵]  

𝑑[𝐵]

𝑑𝑡
= −𝑘. [𝐵1][𝐵] − 𝑘. [𝐵2][𝐵] + 𝑘. [𝐴1][𝐴]  

𝑑[𝑆]

𝑑𝑡
= 𝑘. [𝐴2][𝐴]                                                                  (8) 

𝑑[𝐸]

𝑑𝑡
= 𝑘. [𝐵1][𝐵]                                                     

TABLE I.  SIMULATION VS THEORETICAL COMPUTATION OF RUIN 

PROBABILITY FOR EXAMPLE IN FIG. 1 

Initial value for A Computed ruin probability Error 

100 0.89 0.003 

1000 0.887 0.0009 

10000 0.8862 0.0001 

 

  

Fig. 3. Stochastic simulation results for molecular model of Fig. 1. 

 

Solving these ODEs using the initial values of molecules, we 
can obtain the time variation for each molecule. The final 
concentration of data molecule related to each state can be used to 
determine the probability of that state. 

We used MATLAB to solve the ODEs and plot them as 
shown in Fig. 4(a). The final concentration for ruin and win 
molecules are 88.61 (nM) and 11.39 (nM), respectively. Fig. 4 (b) 
illustrates the ratio [𝑅𝑈𝐼𝑁]/([𝑅𝑈𝐼𝑁] + [𝑊𝐼𝑁]) which is the ruin 
probability and perfectly matches with theoretical value. 

 

Fig. 4. a) ODE simulation for molecular model of  Markov chain in Fig. 1, b) 

The computed [RUIN]/([RUIN]+[WIN]) ratio . 

D1A t1A D2A t2A

 

Fig. 5. DNA representation of molecule 𝐴. 

(b) 
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IV. DNA IMPLEMENTATION 

To implement the proposed model with a real molecular 
system we used DNA strand displacement reactions. As Seelig et 
al [3] show a single strand of a double-strand DNA can be 
replaced by another single strand, provided a toehold binding is 
feasible. By properly designing of toeholds in DNA molecules, an 
arbitrary rate of binding can be achieved. Soloveichik et al [5] 
have illustrated that DNA strand displacement reactions can be 
used to implement an arbitrary bimolecular reaction. Our model 
consists of bimolecular reactions; therefore, it can be 
implemented by DNA strand displacements using the method 
presented in [5]. For this purpose each molecule needs to be 
identified by two toeholds and two domains as depicted in Fig. 5 
for molecule 𝐴. In this representation continuous and dotted lines 
are used for domain and toehold parts, respectively.  

To evaluate the DNA implementation of the proposed model, 
we implement the model for the example shown in Fig. 1. All the 
molecules are mapped to the DNA strands as described above. 
We use the Mathematica tool provided by Soloveichik et al [5] to 
simulate the designed DNA system. The similar initial parameters 
as [5] are used for simulation. Fig. 6 illustrates the dynamic 
concentrations of each data molecular type. The simulation 
results match with the simulation results of ODE model as shown 
in Fig. 4(a). The ruin probability is computed as the ratio of the 
final concentration of 𝑅𝑈𝐼𝑁 molecule over the summation of the 
final concentrations of 𝑅𝑈𝐼𝑁 and 𝑊𝐼𝑁 molecules. 

 

 

 

Fig. 6. Simulation results of DNA implementation for the proposed 

molecular model for Fig. 1. 

We next use our DNA construction for a more complex 
instance of a gambler problem with 𝑁=9 and similar transition 
probabilities. We compute ruin probabilities when the gambler 
starts with $5 and $8. For the first case, we initialize the data 
molecule of the 5th state, 𝐸, to 100nM and the other data 
molecules to zero. While for the second case, we initialize the 
data molecule of the 8th state, 𝐻, to 100nM and the other data 
molecules to zero. Fig. 7 demonstrates the simulation results. 
Note that as tabulated in Table II, the ruin probabilities computed 
using the final concentrations shown in Fig. 7 match with the 
theoretical probabilities.  

 

 
(a) 

 
(b) 

Fig. 7. Simulation results of the DNA implementation for the gambler 

problem with N=9 and starting with a) $5, b) $8. 

TABLE II.  SIMULATION VS THEORETICAL COMPUTATION OF RUIN 

PROBABILITIES FOR A 9-STATE GAMBLER RUIN PROBLEM 

Start state [ruin]/([ruin]+[win]) Theoretical probability of ruin 

$5 0.962 0.9667 

$8 0.569 0.5717 

V. CONCLUSION 

Molecular systems have been used for modeling different 
applications. This paper demonstrates a method for modeling the 
stochastic behavior of Markov chain processes using molecular 
reactions. Both stochastic and ODE simulation results validate our 
model. Although we describe the modeling of a gambler ruin 
problem, a first-order Markov chain with identical transition 
probabilities in each state, the method can be used for modeling 
any Markov chain process. A first-order Markov process with 
different transition probabilities for each state can be easily 
modeled by adjusting the initial quantities for control molecules of 
each state. Future work will be directed towards modeling of 
higher order Markov processes and generalizing the method for 
different types of random processes. 
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