
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Performing Stochastic Computation
Deterministically

M. Hassan Najafi , Member, IEEE, Devon Jenson, Student Member, IEEE, David J. Lilja , Fellow, IEEE,
and Marc D. Riedel, Senior Member, IEEE

Abstract— Stochastic logic performs computation on data
represented by random bit-streams. The representation allows
complex arithmetic to be performed with very simple logic, but
it suffers from high latency and poor precision. Furthermore,
the results are always somewhat inaccurate due to random fluc-
tuations. In this paper, we show that randomness is not a require-
ment for this computational paradigm. If properly structured,
the same arithmetical constructs can operate on deterministic
bit-streams, with the data represented uniformly by the fraction
of 1’s versus 0’s. This paper presents three approaches for the
computation: relatively prime stream lengths, rotation, and clock
division. Unlike stochastic methods, all three of our deterministic
methods produce completely accurate results. The cost of gener-
ating the deterministic streams is a small fraction of the cost of
generating streams from random/pseudorandom sources. Most
importantly, the latency is reduced by a factor of (1/2n), where
n is the equivalent number of bits of precision. When computing
in unary, the bit-stream length increases with each level of logic.
This is an inevitable consequence of the representation, but it
can result in unmanageable bit-stream lengths. We discuss two
methods for maintaining constant bit-streams lengths via approx-
imations, based on low-discrepancy sequences. These methods
provide the best accuracy and area × delay product. They are
fast-converging and therefore offer progressive precision.

Index Terms— Deterministic computing, fast-converging
process, low-discrepancy (LD) bit-streams, pseudorandomized
bit-stream, stochastic computing, unary bit-streams.

I. INTRODUCTION

IN THE paradigm of stochastic computation (SC), digital
logic is used to perform computation on random

bit-streams, where numbers are represented by the probability
of observing a 1 versus a 0 [1]–[5]. The benefit of such a
stochastic representation is that complex operations can be
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performed with a very simple logic. For instance, multiplica-
tion can be performed with a single AND gate, and scaled
addition can be performed with a single multiplexer unit.
One obvious drawback is that the computation has very high
latency, due to the length of the bit-streams. Another is that
the computation suffers from errors due to random fluctuations
and correlations between the streams. These effects worsen
as the circuit depth and the number of inputs increase [5].
A certain degree of accuracy can be maintained by rerandom-
izing bit-streams, but this is an additional expense [6]. While
the logic to perform the computation is simple, generating
random or pseudorandom bit-streams is costly. Indeed, in prior
work, pseudorandom constructs such as linear feedback shift
registers (LFSRs) accounted for as much as 90% of the
area of stochastic circuit designs [3], [4]. This significantly
diminishes the area benefits.

This paper suggests that randomness is not a requirement
for the paradigm. We show that the same computation can
be performed on deterministically generated bit-streams.1 The
results are completely accurate, with no random fluctuations.
Without the requirement of randomness, bit-streams can be
generated inexpensively. Most importantly, with our approach,
the latency is reduced by a factor of approximately (1/2n),
where n is the equivalent number of bits of precision. (For
example, for the equivalent of 10 bits of precision, the bit-
stream length is reduced from 220 to only 210.) As with SC,
all bits in our deterministic streams are weighted equally.
Accordingly, our circuits display the same high degree of
tolerance to soft errors.

Related prior work includes Gupta and Kumaresan [8], who
used LFSRs to generate and multiply stochastic numbers that
are, in certain cases, guaranteed to be exact. They use an
LFSR-based weighted binary stream generator that converts
the input data to multiple bit-streams with different weights
(e.g., 1/2, 1/4, 1/8, etc.) and nonoverlapping 1’s. The determin-
istic methods we propose here are more general; we can use
a variety of techniques for generating numbers [e.g., counters,
LFSRs, or low-discrepancy (LD) sequence generators]. Our
methods converge faster and are more hardware efficient.

We propose three approaches: using relatively prime
lengths, performing rotation, and clock dividing streams.
We design low-cost counter-based structures for these

1We note that pseudorandom bit-streams are often used in stochastic
computing. Such bit-streams are, strictly speaking, deterministic. Here, when
we say deterministic, we mean bit-streams that have simple patterns and
lack any random attributes [7]. An example of a deterministic bit-stream is a
“unary” bit-stream: one with first all 1’s followed by all 0’s.
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approaches to generate and process “unary” bit-streams deter-
ministically. When computing in unary, the bit-stream length
increases with each level of logic: given initial streams of
length n, the length increases to n2 with the first level, n3

with the second level, and nl+1 with l levels. This is a mathe-
matical consequence: for an operation such as multiplication,
the precision of the output values is always more than the
precision of input data. This often results in unmanageable
bit-streams lengths.

We discuss two methods for maintaining constant bit-stream
lengths, based on LD sequences [9]. We show that computa-
tion on LD bit-streams can be completely accurate. We intro-
duce a LD-based deterministic method that converges quickly
and produces completely accurate results. We then integrate
one of the proposed deterministic methods, rotation, with the
LD bit-streams. We show that the LD-based deterministic
methods converge significantly faster to the expected output.
We evaluate the scalability of the proposed methods as the
precision and number of inputs increase.

This paper is structured as follows. Section II presents
background information on SC. Section III gives an intuitive
view of why SC works. Section IV shows how computation
can be performed on deterministic bit-streams in a manner
analogous to computation on stochastic bit-streams. Section V
presents three deterministic methods and describes their cir-
cuit implementations. Section VI discusses two proposed LD
deterministic methods. Section VII compares the performance,
hardware cost, and area-delay product of prior stochastic
methods to the proposed deterministic methods.

II. BACKGROUND ON STOCHASTIC LOGIC

In a paradigm first advocated by Gaines, logical compu-
tation is performed on stochastic bit-streams [1]. There are
two possible coding formats: a unipolar format and a bipolar
format. These two formats are conceptually similar and can
coexist in a single system. In the unipolar coding format, a real
number x in the unit interval (i.e., 0 ≤ x ≤ 1) corresponds
to a bit-stream X (t) of length L, where t = 1, 2, . . . L. The
probability that each bit in the stream is one is P(X = 1) = x .
For example, the value x = 0.3 could be represented by a
random stream of bits such as 0 100 010 100, where 30% of
the bits are one and the remainder are zero. In the bipolar
coding format, the range of a real number x is extended to
−1 ≤ x ≤ 1. The probability that each bit in the stream is
one is P(X = 1) = (x + 1)/2. An advantage of the bipolar
format is that it can deal with negative numbers directly.
However, given the same bit-stream length, L, the precision
of the unipolar format is twice that of the bipolar format. For
what follows, unless stated otherwise, our examples will use
the unipolar format.

The synthesis strategy with stochastic logic is to cast logical
computations as arithmetic operations in terms of probabilities.
Two simple arithmetic operations—multiplication and scaled
addition—are illustrated in Fig. 1.

1) Multiplication: Consider a two-input AND gate, shown
in Fig. 1(a). Suppose that its inputs are two independent
bit-streams X1 and X2. Its output is a bit-stream Y ,

Fig. 1. Stochastic implementation of arithmetic operations. (a) Multiplication.
(b) Scaled addition.

where
y = P(Y = 1) = P(X1 = 1 and X2 = 1)

= P(X1 = 1)P(X2 = 1) = x1x2.

Thus, the AND gate computes the product of the two
input probability values.

2) Scaled Addition: Consider a two-input multiplexer,
shown in Fig. 1(b). Suppose that its inputs are two
independent stochastic bit-streams X1 and X2, and its
selecting input is a stochastic bit-stream S. Its output is
a bit-stream Y , where

y = P(Y = 1) = P(S = 1)P(X1 = 1)

+ P(S = 0)P(X2 = 1) = sx1 + (1 − s)x2.

Thus, the multiplexer computes the scaled addition of
the two input probability values.

III. INTUITIVE VIEW OF STOCHASTIC COMPUTATION

Before presenting our methods, we present two intuitive
explanations of why SC works: computing on averages and
discrete convolution.

A. Taking a Look at the Average

SC is framed as computation on probabilities. Computation
is happening in a statistical sense on the average number of
ones and zeros. As the probability represented by a bit-stream
is equivalent to its expected value, we can instead view
bit-streams by the number of ones and zeros that we would
expect to see on average. For example, if we say that bit-stream
A represents a probability pA = (2/3), this is equivalent to
saying that we expect to see two ones for every three bits.
In general, the number formats (unipolar, bipolar, etc.) are all
defined in terms of the average number of ones and zeros. For
example, the probability p of unipolar and bipolar bit-streams
are given by

puni = N1

N1 + N0
pbi = N1 − N0

N1 + N0
(1)

where N1 and N0 are the average number of ones and zeros,
respectively. Using two independent bit-streams in a unipolar
format, an AND gate multiplies their probabilities. Labeling
the input bit-streams as A and B , the probability of the output
bit-stream C is given by

pC = pA pB = NC1

NC1 + NC0
= NA1

NA1 + NA0

NB1

NB1 + NB0
(2)

where NC1 and NC0 represent the average number of ones
and zeros in bit-stream C , respectively. By multiplying out
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the right side of (2) and organizing the terms

pC = NA1 NB1

NA1 NB1 + (NA1 NB0 + NA0 NB1 + NA0 NB0)
(3)

it can be seen that the fraction has the same form as the
unipolar probability of (1). Therefore, the average number of
ones and zeros in bit-stream C can be written in terms of the
average number of ones and zeros in bit-streams A and B

NC1 = NA1 NB1

NC0 = NA1 NB0 + NA0 NB1 + NA0 NB0. (4)

We define a uniform number as a number in which all
bits are weighted equally. Denote the average number of
ones and zeros in a bit-stream X as the uniform number
NX1{1} + NX0{0}. Distributing the AND operation (denoted
by ∧) gives the same result, as (4)

NC1{1} + NC0{0}
= (NA1{1} + NA0{0}) ∧ (NB1{1} + NB0{0})
= NA1 NB1{1} + (NA1 NB0 + NA0 NB1 + NA0 NB0){0}. (5)

This shows that, by representing probabilities with inde-
pendent random bit-streams, an AND gate operates on average
proportions of ones and zeros. In general, for any arbitrary
logic gate with independent random bit-streams A and B as
inputs, the proportion of bits at the output is given by

NC1{1} + NC0{0}
= (NA1{1} + NA0{0})�(NB1{1} + NB0{0}) (6)

where the � symbol is replaced with any Boolean operator.
This demonstrates that independent random bit-streams pas-
sively maintain the property that the average bits of bit-stream
A are operated on with the average bits of bit-stream B .
Independence guarantees that each outcome of a bit-stream
(one or zero) will “see” the average number of ones and
zeros of another bit-stream. We conclude this section with
two examples demonstrating the application of (6).

Example 1: Assume that we have two independent
bit-streams A and B with unipolar probabilities pA = (1/3)
and pB = (2/3). This means on average we will observe a
single one for every three bits of A and two ones every three
bits of B . If these bit-streams are used as inputs to an AND

gate, the average output and probability are given by

NC1{1} + NC0{0} = (1{1} + 2{0}) ∧ (2{1} + 1{0})
= 2{1 ∧ 1} + 1{1 ∧ 0} + 4{0 ∧ 1} + 2{0 ∧ 0} = 2{1} + 7{0}

⇒ pC = 2/(2 + 7) = 2/9.

Example 2: Assume that we have two independent
bit-streams A and B with bipolar probabilities pA = (4/6)
and pB = (−3/5). This means on average we will observe
five ones for every six bits of A and a single one for every
five bits of B . If these bit-streams are used as inputs to an
XNOR gate, the average output and probability are given by

NC1{1} + NC0{0}
= (5{1} + 1{0}) � (1{1} + 4{0})
= 5{1 � 1} + 20{1 � 0} + 1{0 � 1}

+ 4{0 � 0} = 9{1} + 21{0}
⇒ pC = (9 − 21)/30 = −12/30.

Fig. 2. Sliding operand analogy.

Fig. 3. Multiplication of binary and uniform numbers.

We can see from Examples 1 and 2 that we can find the
output of a stochastic logic gate by taking an average view of
the random bit-streams and applying (6).

B. Insight: Convolution

In basic terms, convolution consists of three operations:
slide, multiply, and sum. For bit-streams X and Y , each with
L bits, the discrete convolution operation is

L∑

i=1

L∑

j=1

Xi Y j . (7)

Section III-A showed an AND gate multiplies proportions
if each bit of one bit-stream “sees” every bit of the other bit-
stream. Intuitively, this is equivalent to sliding one operand
past the other.

Example 3: By sliding the five-bit operands of Fig. 2 past
each other, each bit of the top operand sees two ones and three
zeros and each bit of the bottom operand sees three ones and
two zeros. In this way, a stochastic representation maintains
the sliding of average bit-streams.

A significant attribute of the stochastic representation is
that it is a uniform encoding. Uniform numbers have the
interesting property that the order of elements does not matter
(i.e., the values are not weighted). This means partial
products can be summed by simple concatenation. The
following example demonstrates how this contrasts with binary
multiplication.

Example 4: To multiply binary numbers, we perform bitwise
multiplication and sum the weighted partial products. It takes
two operations, bitwise multiply and sum, to go from binary
inputs to a binary output. In contrast, to multiply uniform
numbers the partial products simply need to be concatenated.
By performing bitwise multiplications sequentially in time,
concatenation is performed passively. Fig. 3 compares mul-
tiplication of binary and uniform numbers.

When using a uniform encoding, we do not need to sum
the output of a logic gate in a particular order to get back
the same representation as the inputs. We have “proportions
in” and “proportions out.” In contrast, a weighted encoding
requires additional circuitry to add the partial products in the
correct manner. This is why the arithmetic logic of a stochastic
representation is so simple, the slide and sum operations
of convolution are passively provided by the representation.
Convolution of proportions only requires logic operations
that result in bitwise (or element-wise) multiplication of the
particular number format.
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These insights lead us to ask: if the process can be described
as multiplying every bit of one proportion by every bit of
another proportion, or equivalently, by sliding and multiplying
deterministic numbers, is randomness actually a requirement?
Can the cost and latency be reduced if one approaches the
problem deterministically?

IV. DETERMINISTIC INTERPRETATION

A. Link Between Representations

Equation (6) gives us a link between independent stochastic
bit-streams and deterministic bit-streams. We can substi-
tute independent stochastic bit-streams for deterministic
bit-streams if (6) holds, that is, if we maintain the property
that proportion A sees every bit of proportion B .

Example 5: Two registers contain deterministic unipolar
proportions pA = (1/3) and pB = (2/3). How can we
generate bit-streams such that a single AND gate performs
multiplication?

From (6), we know each bit of pA must be ANDed with each
bit of pB . Therefore, each bit-stream should be a redundant
encoding that maintains (6). One method, shown in a later
section, is to clock divide one proportion while the other
repeats

Example 6: Three registers contain deterministic unipolar
proportions pA = (1/3), pB = (2/3), and pS = (2/3). How
can we generate bit-streams such that a two-input multiplexer
performs scaled addition?

A multiplexer performs the logical operation (S ∧ A) ∨
(¬S ∧ B), where ∧ is AND, ∨ is OR, and ¬ is NOT. It can be
constructed using two AND gates, an inverter, and an OR gate.
As the circuit simply selects the output of either AND gate,
bit-streams A and B do not need to be independent from each
other. Only bit-stream S is required to be independent from
A and B . Clock dividing S while A and B repeat performs
scaled addition

In these examples, (6) is maintained on deterministic
bit-streams.

B. Comparing the Representations

A stochastic representation passively maintains the property
that each bit of one proportion sees every bit of the other
proportion, but this property occurs on average, meaning the
bit-streams have to be much longer than the resolution they

represent due to random fluctuations. Equation (8) defines
the bit-stream length N required to estimate the average
proportion within an error margin � [10]

N >
p(1 − p)

�2 . (8)

To represent a value within a binary resolution (1/2n),
the error margin � must equal (1/2n+1). Therefore, the bit-
stream must be greater than 22n uniform bits long, as the
p(1 − p) term is at most equal to 2−2 [10]. This means the
length of a stochastic bit-stream increases exponentially with
the desired resolution. This results in enormously long bit-
streams. For example, if we want to find the proportion of a
random bit-stream with 10-bit resolution (1/210), we’ll have
to observe at least 220 bits. This is over a thousand times
longer than the bit-stream required by a deterministic uniform
representation.

The computations also suffer from some level of correlation
between bit-streams. This can cause the results to bias away
from the correct answer. For these reasons, stochastic logic
has only been used to perform approximate computations.

Another related issue is that the LFSRs must be at least as
long as the desired resolution to produce bit-streams that are
sufficiently random. A “Randomizer Unit,” described in [4],
uses a comparator and LFSR to convert a binary encoded
number into a random bit-stream. Each independent ran-
dom bit-stream requires its own generator. Therefore, circuits
requiring i independent inputs with n-bit resolution need i
LFSRs with length L approximately equal to 2n. This results
in the LFSRs dominating a majority of the circuit area.

By using deterministic bit-streams, we avoid all problems
associated with randomness while retaining all the compu-
tational benefits associated with a stochastic representation.
For instance, the deterministic representation retains all the
fault-tolerance properties attributed to a stochastic represen-
tation because it also uses a uniform encoding. To represent
a value with resolution (1/2n) in a deterministic represen-
tation, the bit-stream must be 2n bits long. The computa-
tions are also completely accurate; they do not suffer from
correlation.

To utilize a deterministic representation, bit-stream gener-
ators must explicitly maintain (6). Section V discusses three
methods for generating independent deterministic bit-streams
and gives their circuit implementations. Without the require-
ment of randomness, the hardware cost of the bit-stream
generators is small.

V. DETERMINISTIC METHODS

Each method is implemented using a bit-stream generator
formed by a group or interconnection of converter modules,
as shown in Fig. 4. Each converter module uses the general
circuit topology of Fig. 5. The generator takes in operands and
generates bit-streams such that

G(C0, C1, . . . , Ci−1)

→ (C0{1} + (2n0 − C0){0})
�(C1{1} + (2n1 − C1){0})
� . . .�(Ci−1{1} + (2ni−1 − Ci−1){0}) (9)
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Fig. 4. Deterministic bit-stream generator.

Fig. 5. Converter module.

Fig. 6. Two bit-streams generated by the “relatively prime” method.

where i is the total number of converter modules that make up
the generator, ni is the binary resolution of the i th individual
module, Ci is an operand defining the proportion (or encoded
value) of the bit-stream, and each � can be any arbitrary
logical operator.

The methods maintain independence by using relatively
prime bit lengths, rotation, or clock division. For each method,
the hardware complexity of the circuit implementation is
given. The computational time of each method is the same;
each produces deterministic and completely accurate output.

A. Relatively Prime Bit Lengths

The “relatively prime” method maintains independence by
using proportions that have relatively prime lengths (i.e.,
the ranges [0, Ri ) between converter modules are relatively
prime). Fig. 6 demonstrates the method with two bit-streams
A and B , one with operand length four and the other with
operand length three. The bit-streams are shown in array
notation to show the position of each bit in time.

Independence between bit-streams is maintained because
the remainder, or overlap between proportions, always results
in a new rotation (or initial phase) of a proportion. Intuitively,
this occurs because the bit lengths share no common factors.
This results in every bit of each operand seeing every bit of
the other operand. For example, a0 sees b0, b1, and b2; b0
sees a0, a3, a2, and a1; and so on. Using two bit-streams with
relatively prime bit lengths j and k, the output of a logic gate
repeats with period jk. This means with multilevel circuits the

Fig. 7. Arbitrary multilevel circuit with streams generated by the “relatively
prime” method.

Fig. 8. Circuit implementation of the “relatively prime” method.

Fig. 9. Two permuted bit-streams generated by the “relatively prime” method.

output of the logic gates will also be relatively prime. Fig. 7
demonstrates this with a two-level circuit.

A circuit implementation of the “relatively prime” method
is shown in Fig. 8. Each converter module uses a counter as a
number source for iterating through each bit of the proportion.
The state of the counter Qi is compared with the proportion
constant Ci . The relatively prime counter ranges Ri between
modules maintain independence; there are no interconnections
between modules. In terms of general circuit components,
the circuit uses i counters and i comparators, where i is the
number of generated independent bit-streams. Assuming the
max range is a binary resolution 2n and all modules are close
to this value (i.e., 256, 255, 253, 251...), the circuit contains
approximately i n-bit counters and i n-bit comparators.

An interesting property of the proposed “relatively prime
bit lengths” method is that it maintains independence between
bit-streams irrespective of the order of bits in each operand.
As illustrated in Fig. 9, the operands of Fig. 6 can be permuted,
and yet every bit of the first operand sees every bit of
the second operand exactly once.

A limitation of this method is that it requires the inputs to
have relatively prime lengths. In this paper, we focus on a dig-
ital representation of data, but the “relatively prime” method
may also work well with an analog interpretation of the bit-
streams, where the value is encoded as the fraction of time the
signal is high and the independence property is maintained by
using relatively prime (or inharmonic) frequencies [11], [12].

B. Rotation

In contrast to the “relatively prime” method, the “rota-
tion” method allows proportions of arbitrary length to be
used. Instead of relying on relatively prime bit lengths,
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Fig. 10. Two bit-streams generated by the rotation method.

Fig. 11. Two permuted bit-streams generated by the “rotation” method.

Fig. 12. Arbitrarily chosen multilevel circuit, with bit-streams generated by
the “rotation” method.

the proportions are explicitly rotated. This requires the
sequence generated by the number source to change after it
iterates through its entire range. For example, a simple way to
generate a bit-stream where the proportion rotates in time is
to inhibit or stall a counter every 2n clock cycles (where n is
the length of the counter). Fig. 10 demonstrates this method
with two bit-streams, both with proportions of length four.

By rotating bit-stream B’s proportion, it is straightforward
to see that each bit of one bit-stream sees the other bit-stream’s
proportion. As with the “relatively prime” method, the operand
of each bit-stream can be permuted and yet each bit of one
operand sees every bit of the other operand exactly once,
as illustrated in Fig. 11.

Assuming all proportions have the same length, we can
extend the two bit-stream example to work with multiple
bit-streams by inhibiting the number source at powers of the
operand length. This allows the operands to rotate relative to
longer bit-streams. For example, consider the circuit in Fig. 12.
Bit-stream A does not rotate, bit-stream B rotates every 2n

clock cycles, and bit-stream C rotates every 22n clock cycles.
The resultant bit-stream AB of the AND gate repeats every 22n

clock cycles and bit-stream C rotates every 22n bits. Therefore,
bit-stream C rotates relative to the bit-stream AB , maintaining
the rotation property for multilevel circuits.

A circuit implementation follows from the previous exam-
ple. We can generate any number of independent bit-streams as
long as the counter of every i th converter module is inhibited
every 2ni clock cycles. This can be managed by adding
additional counters between each module as shown in Fig. 13.
These counters control the phase of each converter module
and maintain the property that each converter module rotates
relative to the other modules. Using n-bit binary counters and
comparators, the circuit requires i n-bit comparators and 2i −1
n-bit counters.

The advantage of using rotation as a method for generating
independent bit-streams is that we can use operands with the

Fig. 13. Circuit implementation of the “rotation” method.

Fig. 14. Two bit-streams generated by the clock division method.

Fig. 15. Two permuted bit-streams generated by the clock division method.

same resolution, but this requires slightly more circuitry than
the “relatively prime” method.

C. Clock Division

The “clock division” method works by clock dividing
operands. Similar to the “rotation” method, it allows propor-
tions to have arbitrary lengths. This method was first seen
in Example 5. Fig. 14 demonstrates this method with two
bit-streams, both with proportions of length four. Fig. 15
depicts a permuted version of this method. In both figures
bit-stream B is clock divided by the length of bit-stream A’s
proportion.

Assuming all operands have the same length, we can gener-
ate an arbitrary number of independent bit-streams as long as
the number source of every i th converter module generates a
new number every 2ni clock cycles. This can be implemented
in circuit form by simply chaining the converter modules
together, as shown in Fig. 16. Using n-bit binary counters and
comparators, the circuit requires i n-bit comparators and i n-
bit counters. This means the “clock division” method allows
operands of the same length to be used with approximately the
same hardware complexity as the “relatively prime” method.

D. Unary Versus Permuted Deterministic Bit-Streams

With randomized bit-streams, the accuracy of the com-
putation generally improves as the computation proceeds.
This property can be exploited in applications of SC [7].
In contrast, deterministic computation with any of the three
methods discussed above does not enjoy this property of
“progressive precision.” Due to the nature of the represen-
tation, unary bit-streams with first all ones and then all zeros,
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Fig. 16. Circuit implementation of the clock division method .

truncating a stream can change its value significantly and
hence result in relatively high error [11].

However, as discussed above, the bits in deterministic
streams can be permuted without affecting the computation.
Therefore, instead of using a counter to generate streams,
we can use a pseudo-random source such as an LFSR in the
converter modules. Here, we are not using such constructs
for the sake of introducing pseudo-randomness, but rather to
permute the bits in streams effectively. The pseudo-random
source must have a period equal to the length of the operand.
Accordingly, we generate all numbers in the range [0, Ri ).

With the “rotation” and “clock division” methods discussed
above, we can easily substitute maximal period LFSRs for
counters to improve the progressive precision of the streams.2

However, with the “relatively prime” method, using an n-bit
LFSR as a number source with a prime period of Ri means
losing some numbers in the range of (0, Ri ).

From the point of view of hardware cost, an n-bit LFSR
costs approximately the same as an n-bit counter. However,
due to a higher number of bit transitions and so higher
switching activity, an LFSR consumes more dynamic power
than a counter. If we are going to run the computation to full
accuracy, counters will be a better choice. However, for appli-
cations that can exploit progressive precision, making early
decisions and so truncating the computation, LFSRs might be
a better choice. In Section VII, we evaluate the performance
and hardware cost of the three proposed deterministic methods,
implemented with both counters and LFSRs.

VI. LOW-DISCREPANCY DETERMINISTIC METHODS

In this section, we propose two fast-converging determin-
istic methods for computation with bit-streams using LD
sequences. While the first method is independent of the three
methods discussed in Section V, the second method is an
integration of the deterministic methods of Section V with
LD bit-streams.

A. Low-Discrepancy Sequences in SC

Low-discrepancy (LD) sequences have traditionally been
used to accelerate the convergence in Monte Carlo
simulations [13]. Recent work on SC [14]– [16] utilized these
sequences to improve the speed of computation on stochastic

2We note that the 0-state is skipped in an LFSR. Therefore, an n-bit maximal
period LFSR has a period of 2n − 1, while a counter has a maximum range
and period of 2n .

Fig. 17. Sobol sequence generator [13], [15].

bit-streams. With LD sequences, 1’s and 0’s in the stochastic
streams are uniformly spaced, so the streams do not suffer
from random fluctuations. The bit-streams can quickly and
monotonically converge to the target value, producing accept-
able results in a much shorter time [14].

Alaghi and Hayes proposed the use of LD Halton sequences
for SC [14]. A Halton sequence generator consists of a
binary-coded base-b counter, where b is a prime number.
For d independent input streams in a SC system, d counters
with different prime bases must be used. For instance, in the
simplest case of multiplying two stochastic bit-streams using
an AND gate, one base-2 and one base-3 counter is required.
Stochastic bit-streams generated using Halton-based sequences
can significantly improve the processing time of SC. However,
the base conversion comes at the cost of significant additional
hardware overhead [15].

Liu and Han [15] recently proposed a different LD-based
stochastic stream generator based on Sobol sequences. Com-
pared to generating Halton sequences, generating Sobol
sequences does not require additional base-conversion hard-
ware. The Sobol sequence generator, instead, consists of
an address generator that detects the position of the least
significant zero, a storage array storing the values of the
direction vectors, and a pair of XOR gate and D-type flip-
flop for recursively generating random numbers. The structure
of the Sobol sequence generator, shown in Fig. 17 (b), was
proposed in [13] and used in [15] for generating LD stochastic
bit-streams. Different Sobol sequences can be generated by
changing the values of the direction vectors.

Liu and Han [15] showed that the Halton-based stochastic
multiplier takes about twice the sequence length to achieve a
similar accuracy as the Sobol-based design. An n-bit Sobol
generator, on the other hand, has a higher hardware footprint
than an n-bit Halton generator. Both these designs consume a
similar amount of energy if there is no parallelization [16].
An efficient parallel Sobol generator has been recently
developed [16]. With parallelization, the processing time is
significantly reduced: multiple Sobol numbers are generated
in each cycle at the cost of some additional XOR gates.

B. First Method: Direct LD

The first method uses the LD Sobol sequences and is
independent of prior deterministic methods. The required
independence between the input bit-streams is guaranteed by
simply using different Sobol sequences for generating the
bit-streams and processing the streams for a specific number
of cycles. The important point for this method is that the
precision of the LD sequence generator should be i times
the precision of the input data, where i is the number of
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Fig. 18. First 16 numbers of the first four Sobol sequences from MATLAB built-in Sobol sequence generator, and the category of each one based on their
position in the [0, 1] interval.

independent bit-streams. Each input data must be converted
to a stream of 2in bits by comparing the input value to 2in

different numbers from the sequence generator. For example,
to multiply two n-bit precision input data, two 2n-bit precision
Sobol sequence generators are required.

In the following, we see an example of multiplying two
2-bit precision input values using the first proposed method.
The first input value is converted to a bit-stream representation
using the simplest Sobol sequence (Sobol sequence 1 in
Fig. 18). The second input value is converted using the second
Sobol sequence from the MATLAB built-in Sobol sequence
generator (Sobol sequence 2 in Fig. 18). Note that when
converting to a bit-stream representation, a one is generated if
the Sobol number is less than the input target number.

Example 7: Deterministic 2-bit precision multiplication
using the first proposed method

1/4 = 1000 1000 1000 1000
3/4 = 1101 1110 0111 1011

3/16= 1000 1000 0000 1000

As can be seen, the accurate output of multiplying the two
2-bit precision input values is obtained by directly converting
the inputs to 24 bit-streams, by comparing them to the first 24

numbers of two Sobol sequences and ANDing the generated
bit-streams.

To prove why the first proposed method produces determin-
istic and accurate results, we use two important properties of
the Sobol sequences.

1) The first 2n numbers of any Sobol sequence include all
n-bit precision values in the [0, 1) interval.

2) If equally split [0, 1) into 2n subintervals, in any con-
secutive group of 2n Sobol numbers starting at positions
i × 2n(i = 0, 1, 2, . . .), there is exactly one member in
each sub-interval.

Fig. 18 categorizes consecutive groups of 22 numbers in the
first four Sobol sequences. Each Sobol number in each group
is labeled with a number from 0 to 3 depending on its sub-
interval. For example 1/8 in Sobol sequence 1 is labeled
with a0 because it is a member of the first sub-interval,
[0, 1/4). When converting a 2-bit precision input value into
a 24 bit-stream by comparing it to the first 24 numbers of a
Sobol sequence, the result is the same for the Sobol numbers
with the same label. For example, comparing 3/4 to 5/8 and

Fig. 19. Structures of the sources of generating Sobol sequences based on
(a) first proposed method (b) second proposed method.

11/16 from the Sobol sequence 2 generates the same bit of
’1’ as both 5/8 and 11/16 are a member of [1/2, 3/4) (label
b2) and so are both less than the input value of 3/4. As shown
in Fig. 18, any selected group of 22 numbers includes all labels
from 0 to 3, and as a result, all groups of the same Sobol
sequence will produce the same number of 1s. All groups can
accurately present the target input value and their difference
will only be in the order of bits (order of labels).

In Section V, we observed that two input values can be
multiplied, deterministically and accurately, by simply pairing
every bit of one input stream with every bit of the other
stream exactly once. As shown in Fig. 18 for n = 2, for
any pair of two different Sobol sequences, every label u
(u = 0, 1, 2, 3) in xu (x = a, b, c, d) meets every label t
(t = 0, 1, 2, 3) in yt (y = a, b, c, d) exactly once. Therefore,
the result of multiplying two 2-bit precision numbers by
ANDing their 24 bit-stream representation, generated based on
two different Sobol sequences, is deterministic and completely
accurate.

This argument can be easily extended to the multiplication
of i n-bit precision numbers when converting the input num-
bers to bit-streams of 2i.n -bit length by comparing them to
2i.n numbers from i different Sobol sequences. The generated
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bit-streams can be divided into groups of 2n bits. Every bit
(label) from a bit-stream interacts with every bit (label) of the
other bit-streams exactly once, which results in a deterministic
and accurate output bit-stream.

Fig. 19(a) shows the structure of the sources of generating
Sobol sequences for the first proposed LD-based method.
These are used as the number sources in the converter module.
Note that the simplest Sobol sequence is simply the reverse of
the output bits of a binary counter. Accordingly, we generate
the first Sobol sequence by hard-wiring the output bits of a
counter at no extra hardware cost.

C. Second Method: Integrated LD

The second method integrates LD sequences with the meth-
ods of Section V by using LD sequence generators as the
number source in converter modules. In contrast to our first LD
method, for the second method, the precision of the sequence
generator is equal to the precision of the input data. For
example, for the multiplication of two n-bit precision input
data, two n-bit LD sequence generators are required. When
using Halton sequences which are generated based on prime
numbers, the “relatively prime” method must be used. The
Sobol sequences, on the other hand, must be integrated with
the “clock division” or “rotation” methods. The operations
then must continue for the product of the length of the
bit-streams to produce deterministic and accurate results.

We will show in Section VII that the “rotation” method
converges faster and is more energy-efficient than the “clock
division” method. Therefore, in what follows, we integrate LD
Sobol sequences with the rotation method. While we limit
our reported results to LD Sobol sequences and the “rotation”
approach, the proposed idea can similarly be applied to LD
Halton sequences and the “relatively prime” method.

The “rotation” method guarantees a deterministic and
accurate output by rotating the bit-streams through inhibiting
or stalling on powers of the stream lengths. Fig. 19 (b) shows
the structure of the sources for generating Sobol sequences
with the second LD method. The first Sobol source repeats
every 2n cycles but do not rotate. Other Sobol sources (source
k=2, 3,…, i ) have a period of 2n but rotate every 2(k−1)·n
cycles by inhibiting. Additional counters control these inhibits.
We will show that, due to the use of n-bit Sobol generators
instead of expensive i ·n-bit generators, the second LD method
incurs a lower hardware cost than the first LD method.

In the following, we see an example of multiplying two 2-bit
precision input values using the second proposed LD method
based on the first two Sobol sequences.

Example 8: Deterministic 2-bit precision multiplication
using the second LD-based method

Sobol source 1 with a period of 22 and no rotation:
0,1/2,1/4,3/4, 0,1/2,1/4,3/4, 0,1/2,1/4,3/4, 0,1/2,1/4,3/4
Sobol source 2 with a period of 22 and inhibiting after every

22 cycles:
0,1/2,3/4,1/4, 1/4,0,1/2,3/4, 3/4,1/4,0,1/2,1/2,3/4,1/4,0

2/4 = 1010 1010 1010 1010
3/4 = 1101 1110 0111 1011

6/16= 1000 1010 0010 1010

As can be seen, by exploiting the “rotation” approach,
every number in the first four numbers of the Sobol source
1 pairs with every number in the first four numbers of the
Sobol source 2 exactly once. This has led to a deterministic
and accurate multiplication when these rotated sequences of
numbers are used in converting the input values, 2/4 and 3/4,
into bit-stream representation.

VII. EXPERIMENTS

In this section, we first compare the accuracy and hardware
cost of the proposed deterministic methods with conventional
stochastic method for multiplication. We then compare
implementations of a well-known digital image processing
algorithm, the Robert’s cross edge detection, from the point of
view of performance, hardware cost, and area-delay product.

A. Accuracy Comparison

For an accuracy comparison of the proposed deterministic
methods with conventional SC, we exhaustively tested the
multiplication of two 8-bit precision input data in the [0, 1]
interval. For the conventional SC and for the deterministic
LFSR-based approaches, the input data were selected from a
large set of random input values. For the counter-based and the
LD-based deterministic methods, we tested the multiplication
operation on every possible pair of input values.

For the conventional SC and for the LFSR-based determinis-
tic methods, we used maximal period 32-bit and 8-bit LFSRs,
respectively, as the number source in the converter module.
Two different LFSRs (i.e., different designs with different
seeds) were used in each case. An n-bit maximal period LFSR
has a period of 2n − 1, as the 0-state in the LFSR is normally
not used. Here, for a fair comparison between the LFSR-based
deterministic methods and the counter-based and the LD-based
deterministic approaches, we added a 0-state to the set of the
states of each 8-bit LFSR to generate 28 unique numbers. For
the LFSR-based relatively prime method, the period of the sec-
ond LFSR was fixed at 28 − 1. For the LD-based methods,
we used the first and the second Sobol sequences from the
MATLAB built-in Sobol sequence generator (see Fig. 18).

Table I compares the mean absolute error (MAE) of
different methods. We multiply the measured mean value of
each method by 100 and report it as a percentage. Due to
inherent random fluctuations in generating bit-streams and cor-
relation between bit-streams, conventional SC cannot produce
completely accurate results in 216 cycles. All the proposed
deterministic methods, on the other hand, produced completely
accurate results in 216 cycles. The results were the same as
the results from a conventional binary radix-based multiplier.

Due to the nature of unary representation, truncating the
bit-streams in the counter-based deterministic methods leads to
a high truncation error. For example, when running the multi-
plication operation for 215 cycles (processing 215-bit streams),
the three counter-based deterministic methods showed a MAE
of more than 3 percent. For applications where slight inac-
curacy is acceptable this high truncation error makes the
conventional SC a better choice than the counter-based deter-
ministic methods.
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TABLE I

MAE (%) COMPARISON OF THE CONVENTIONAL SC AND THE PROPOSED DETERMINISTIC METHODS WHEN MULTIPLYING TWO 8-bit
PRECISION STOCHASTIC STREAMS WITH DIFFERENT NUMBERS OF OPERATION CYCLES

We solve the high truncation error of the counter-based
deterministic methods by bringing randomization back into
representation. Instead of counters, we use LFSRs as the
number source with the “relatively prime length,” “rotation,”
and “clock division” methods. As shown in Table I, when
truncating bit-streams, the three LFSR-based deterministic
methods achieve a much lower MAE than their corresponding
counter-based implementations. The LFSR-based relatively
prime length and rotation methods even achieved a lower MAE
than conventional SC.

The best MAEs, however, were produced by the two LD
deterministic methods. When using the proposed LD methods,
the MAEs of the truncated computation are significantly lower
than those of the conventional SC and the counter-based
and LFSR-based deterministic methods. For example, when
running the two-input multiplication operation for 215 cycles,
the proposed LD methods achieve a MAE of approximately
10−3, which is 150×, 100×, and 3000× lower than the MAE
of the conventional SC, the deterministic LFSR-based rotation,
and the counter-based rotation methods, respectively.

B. Cost Comparison

Perfectly precise computations require the output resolution
to be at least equal to the product of the input resolutions.
This is demonstrated in (6), where to precisely compute the
output of a logic gate given two proportions, each bit of one
proportion must be operated on with every bit of the other
proportion. For example, with proportions of size n and m,
the precise output contains nm bits.

Assuming that each independent input i has the same res-
olution (1/2nin), the output resolution is given by (1/2nout) =
(1/2nini ). As discussed in Section IV, with a conventional sto-
chastic representation, bit-streams of 22n-bit long are required
to represent a value with (1/2n) precision. To ensure the
generated bit-streams are sufficiently random and independent,
each LFSR has at least as many states as the required output
bit-stream. Therefore, to compute with perfect precision, each
LFSR must have at least length 2nini .

With the deterministic methods, the resolution n of each
input i is determined by the length of its converter module
number source. The output resolution is simply the product
of the number source ranges. For example, with the “clock
division” method, each converter module number source is
connected in series. With i inputs each with resolution n,

the series connection forms a large number source with 2ni

states. This shows that output resolution is not determined
by the length of each individual number source, but by their
concatenation. This allows for a large reduction in circuit area
compared to the conventional stochastic method.

The hardware area costs of the proposed deterministic
methods for the case of implementing a 2-input 8-bit precision
multiplier are compared in Table I. We synthesized the designs
using the Synopsys Design Compiler vH2013.12 with a 45-nm
gate library. As shown in this table, the proposed counter-based
and LFSR-based deterministic methods have a significantly
lower hardware cost than the conventional stochastic method.
The two LD-based deterministic methods have a higher cost
than other deterministic methods due to LD Sobol sequence
generators. The first LD method is 2.6 times more costly than
the second LD method, due to the expense of generating 16-bit
Sobol sequences.

C. Scalability Evaluation

To evaluate the scalability of the proposed methods,
we extend our experiment to 3-input and 4-input stochastic
multipliers, with 4-bit and 8-bit precision. The hardware area
costs are reported in Table II. We also report the area numbers
for a conventional binary radix multiplier. As can be seen
in the reported numbers, among the bit-stream-based designs
the “relatively prime length” and “clock division” methods
have the lowest hardware cost. These two methods and the
“rotation” method have the lowest cost increase rate (∼2×)
from two inputs to four inputs. The first LD method, which
had the fastest convergence, as shown in Table I, has the
highest hardware cost with highest cost increase rate (9×)
from two inputs to four inputs. The second LD method,
on the other hand, is also fast converging, but has a cost
increase rate (2.5×) very close to the cost increase rates of
the counter-based and LFSR-based deterministic methods. The
conventional stochastic method is more costly than all imple-
mented deterministic methods except the first LD method. The
hardware cost of the binary radix-based multiplier increases
by a factor of 7× going from two inputs to four inputs. This
increase is greater than all the proposed methods except the
first LD method.

The important metric, however, to evaluate the effi-
ciency of different methods is the area-delay product as an
estimation of energy consumption. The area×delay of the
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TABLE II

HARDWARE AREA COST (μm2) OF THE MULTIPLIER WITH DIFFERING DATA PRECISION (N ) AND NUMBER OF INPUTS ( I )

Fig. 20. Area × delay of 8-bit precision multipliers for different MAEs. Note that the area × delay numbers for some methods were much larger than other
method and out of the range shown.

implemented 8-bit precision multipliers for different MAEs
is shown in Fig. 20. We first exhaustively tested each design
approach with a large set of input values and found the average
processing time of each one to achieve a specific MAE rate.
We then multiplied the processing time by the corresponding
design hardware area cost to produce the area-delay product.
As shown in Fig. 20, the second LD method and the 4x
parallel structure of the first LD method have shown the
lowest area-delay product among the implemented multipliers.
When increasing the number of inputs, the LFSR-based “rela-
tively prime” method and the conventional stochastic method
approach these methods. The high hardware cost of the first
LD method makes its area-delay product worse than that of the
conventional SC and the relatively prime LFSR-based method
as the number of inputs increases. The 4x parallel version
of the first LD method, however, is more efficient due to its
parallel structure. Its area-delay product grows comparatively
slowly with the number of inputs.

From our scalability evaluation, we make the following
conclusions.

1) When completely accurate results are desired, the
“relatively prime length” and the “clock division”
methods are the best choices. They have the lowest
hardware cost; so for the same operation time, equal
to the product of the length of the bit-streams, these
provide the minimum area-delay product.

2) When an application can tolerate some small degree
of inaccuracy and only a few independent bit-streams
are used, the second and the parallel version of the
first LD-based methods are the best choices. Note that
some SC-based implementations of neural networks
require only two independent sources for generating
bit-streams [17]. In Section VII-D, we show that these
LD-based methods provide the minimum area-delay
product for the Robert’s cross edge detection circuit.

3) When an application can tolerate relatively high inac-
curacy and a large number of independent inputs are
needed, a conventional stochastic implementation is the
best choice.

The LFSR-based “relatively prime” method showed good
scalability (see Fig. 20). However, implementing LFSRs with
relatively prime periods can be difficult; also precisely repre-
senting arbitrary n-bit numbers with prime stream lengths can
be problematic. Unlike conventional SC, the converter for the
“relatively prime” method is also complex and costly since
its bit-stream length is not a power of 2; a divider must be
used. Accordingly, a conventional stochastic implementation
might be a better choice when a large number of independent
digital bit-streams are required. Still, the “relatively prime”
method may be an excellent solution for the mixed-signal
design of stochastic circuits, where the values are encoded
as the fraction of time the signal is high and represented
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Fig. 21. Stochastic circuit for Robert’s cross edge detection algorithm [18].

using analog pulse-width modulated signals. A low-cost active
integrator can be used as the converter in this case to average
the output signal [11], [12].

D. Robert’s Cross Edge Detection Implementation

To further evaluate the proposed deterministic methods
we studied implementations of a well-known digital image
processing algorithm, the Robert’s cross edge detection. In this
edge detector, each operator consists of a pair of 2 × 2
convolution kernels that process the pixels of the input images
based on their three immediate neighbors

Yi, j = S × (|Xi, j − Xi+1, j+1| + |Xi, j+1 − Xi+1, j |)
where Xi, j is the scaled value of the pixel at location (i, j) of
the input image, and Yi, j is the corresponding output value.
Since the value of the pixels are originally in the range of
[0, 255] we need to scale down the inputs to the [0,1] interval
to process these with stochastic logic. S is also often set
to 0.5 to scale down the output range from [0,2] to [0,1].
Fig. 21 shows the stochastic implementation of the Robert’s
cross algorithm proposed in [18]. The multiplexer (MUX) unit
performs the scaled addition operation with the scaling factor
of S. For accurate scaled addition, the bit-stream connected
to the select input of the MUX should be independent of the
MUX’s two main input bit-streams [4]. Setting the S input
to 0.5 would limit our experiment to a 2-bit precision select
bit-stream. This could favor the LD-based bit-streams (see the
properties of Sobol sequences in Section VI-B). Therefore,
to generalize our evaluation and provide a fair comparison we
use 8-bit precision random input values as the scaling factor.
This changes the effective operation to

Yi, j = (1 − S) × |Xi, j − Xi+1, j+1| + S × |Xi, j+1 − Xi+1, j |.
The two XOR gates compute absolute value subtraction

if they are fed with correlated input streams (streams with
maximum overlap between 1’s) [18]. Sharing the same number
source in generating the input streams provides correlated
bit-streams. For the circuit shown in Fig. 21 the bit-streams
connected to the inputs of the XOR gates should be correlated
with each other but should be independent of the MUX’s select
input bit-stream. Two number generators are therefore required
for this circuit; one for converting the four main inputs and
one for converting the select input.

We evaluate the performance, hardware area, and area-delay
product of the Robert’s cross stochastic circuit in four dif-
ferent cases: 1) the conventional approach of processing
random streams; 2) the proposed deterministic approaches
of processing counter-based unary streams; 3) the proposed

deterministic approaches of processing LFSR-based pseudo-
random streams; and 4) the proposed deterministic methods
of processing LD streams. The circuit shown in Fig. 21 is the
core stochastic logic and will be shared between all cases.

For the relatively prime methods, we fix the period of
the first and the second number sources on 28 and 28 − 1,
respectively. LFSRs and counters with periods of 28 and
28 − 1 are therefore implemented. For the conventional SC,
we use two different 8-bit or two different 16-bit LFSRs as
the required sources of random numbers. For the first LD
method, similar to Fig. 19(a), one 16-bit counter and one
16-bit precision Sobol generator (both with a period of 216) are
implemented. For the 4x parallel structure of the first LD-based
method we implement one 16-bit 4x parallel counter and one
16-bit 4x parallel Sobol generator, as proposed in [16]. Both
the counter and the Sobol generator have a period of 216

and generate four numbers in each cycle. For the second
LD method, similar to Fig. 19(b), one 8-bit counter, one
8-bit counter with enable input, and one 8-bit precision Sobol
generator, all with a period of 28, are implemented. For all
other methods, the number sources have a period of 28. Five
8-bit comparators are used in all different cases, except the
4x parallel design with 20 8-bit comparators, to compare the
output of the number sources with the input values to generate
the corresponding bit-streams.

Table III compares the hardware footprint, delay, and
area-delay product numbers. To comprehensively test the
designs, we simulate the operation of the Robert’s cross circuit
in each design approach by processing 2000 sets of 8-bit
precision random input values. For the accurate representation
of input values in each design, we randomly choose integer
values between zero and the period of the number generators
and divide the integer value by their period.

When completely accurate results are expected, the
deterministic designs must run for the same number of cycles
(product of the periods of the number generators). Considering
the higher hardware cost of the LD-based designs, the three
counter-based and the three LFSR-based implementations have
a lower area-delay product than the LD-based designs. Among
these, the rotation-based methods have a slightly higher
hardware cost and hence higher area-delay product than the
“relatively prime” and “clock division” methods. LFSRs
have a higher switching activity than counters. Therefore,
if factoring in the dynamic power consumption, for the
case of implementing highly accurate Robert’s cross circuit,
the counter-based deterministic methods are more efficient
than the LFSR-based deterministic methods.

The advantage of the LFSR-based methods compared to
the counter-based methods becomes apparent when slight
inaccuracy in the computation is acceptable. In such cases,
the LFSR-based designs give a significantly lower area ×
delay, as they converge to the expected accuracy much quicker.

For the “relatively prime” and “rotation” approaches the
proposed LFSR-based designs improve the processing time by
61% compared to the corresponding counter-based determin-
istic designs, when accepting an MAE of as low as 0.1%.
This results in an area-delay saving of around 55%. For
an MAE of 3.0%, these LFSR-based architectures showed
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TABLE III

AREA (μm2), DELAY (NUMBER OF CYCLES), AND AREA × DELAY/1000 OF THE ROBERT’S CROSS STOCHASTIC CIRCUIT SYNTHESIZED WITH THE

8- AND 16-bit CONVENTIONAL SC APPROACH AND ALSO THE PROPOSED DETERMINISTIC APPROACHES

∼395× lower area-delay product by improving the processing
time more than 400× compared to the counter-based archi-
tectures. For the “clock division” approach, the LFSR-based
design of the Robert’s cross circuit is more efficient when
an MAE of 0.3% or greater is acceptable. The area-delay
product decreases by a factor 13 with this method, with
MAE of 3%.

Compared to conventional SC designs, LFSR-based deter-
ministic structures had a smaller area-delay product when
the conventional design implemented with 16-bit LFSRs,
but roughly the same area-delay product when implemented
with 8-bit LFSRs. The important point, however, is that a
conventional SC design cannot achieve an MAE of 1.0% or
lower when implemented with 8-bit LFSRs; a conventional SC
design implemented with 16-bit LFSRs requires inordinately
long processing times to produce completely accurate results.

Due to fast convergence, the LD-based implementations
of the Robert’s cross circuit can satisfy a fixed requirement
for accuracy with much shorter processing time than the
counter-based and LFSR-based deterministic implementations.
This leads to a much lower area × delay for these implementa-
tions. As the results of Table III show, the 4x parallel structure
of the first LD and also the second LD methods provide the
best area-delay products for MAEs greater than 0.01%.

VIII. CONCLUSION

There has been widespread interest in the idea of stochastic
logic in recent years. We point to [5] and [7] for surveys
of work in the area. While numerous papers have advocated
the advantages of the paradigm, the narrative has never been
compelling. Yes, the paradigm permits complex arithmetic
operations to be performed with remarkably simple logic,
but generating the bit-streams is costly, essentially offsetting
the benefit. The long latency, poor precision, and random
fluctuations are near disastrous for most applications.

While it is easy conceptually to understand how SC works,
randomness is costly. This paper argues that randomness is
not necessary. Instead of relying upon statistical sampling to

operate on bit-streams, we can explicitly “convolve” them:
we slide one operand past the other, performing bitwise
operations. We argue that the logic to perform this convolution
is less costly than that to randomized bit-streams. The results
of our computation are predictable and completely accurate for
all input values. Most importantly, we can use much shorter
bit-streams to achieve the same accuracy as with statistical
sampling through randomness. We conclude that there is no
clear reason to use randomness. Even when randomness is
free, say harvested from thermal noise or some other physical
source, SC entails very high latency. In contrast, computation
on deterministic uniform bit-streams is less costly, has much
lower latency, and is completely accurate.

We do note that there is one drawback to the approach:
bit-stream lengths grow with each level of logic. This is,
in fact, a mathematical requirement. Consider the multipli-
cation of two numbers, each encoded with a precision of n
binary bits. Regardless of the encoding, the precision of the
result must be greater than the precision of the two operands:
up to n2 bits are required. Stochastic encodings have the
same requirement. However, with randomness it is easy to
approximate the result, by simply truncating the length of the
streams. Accordingly, most stochastic circuits keep constant
bit-stream lengths regardless of the levels of logic.

To address this issue, we explored variants of our
deterministic approach that permit truncation, and so limit
the increase in the bit-stream lengths with multiple levels of
logic. We proposed two methods based on LD sequences.
These methods provide the best accuracy and the lowest area
× delay. Although the hardware area cost of the LD-based
methods is higher, they provide progressive precision: the
longer the algorithm runs the more precise the computation
becomes. In future work, we will explore applications of these
techniques in areas such as image processing and machine
learning.
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