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Transforming Probabilities
with Combinational Logic

Weikang Qian, Marc D. Riedel, Hongchao Zhou, and Jehoshua Bruck

Abstract—Schemes for probabilistic computation can exploit
physical sources to generate random values in the form of bit
streams. Generally, each source has a fixed bias and so provides
bits that have a specific probability of being one versus zero. If
many different probability values are required, it can be difficult
or expensive to generate all of these directly from physical
sources. In this work, we demonstrate novel techniques for
synthesizing combinational logic that transforms a set of source
probabilities into different target probabilities. We consider three
different scenarios in terms of whether the source probabilities
are specified and whether they can be duplicated. In the case that
the source probabilities are not specified and can be duplicated,
we provide a specific choice, the set {0.4, 0.5}; we show how
to synthesize logic that transforms probabilities from this set
into arbitrary decimal probabilities. Further, we show that for
any integer n ≥ 2, we can find a single source probability that
can be transformed into arbitrary base-n fractional probabilities
of the form m

nd . In the case that the source probabilities are
specified and cannot be duplicated, we provide two methods for
synthesizing logic to transform them into target probabilities. In
the case that the source probabilities are not specified, but once
chosen cannot be duplicated, we provide an optimal choice.

Index Terms—logic synthesis, combinational logic, probabilistic
logic, probabilistic signals, random bit streams, stochastic bit
streams

I. INTRODUCTION AND BACKGROUND

Most digital circuits are designed to map deterministic
inputs of zero and one to deterministic outputs of zero and
one. An alternative paradigm is to design circuits that operate
on stochastic bit streams. Each stream represents a real-valued
number x (0 ≤ x ≤ 1) through a sequence of random bits
that have probability x of being one and probability 1 − x
of being zero. Such circuits can be viewed as constructs that
accept real-valued probabilities as inputs and compute real-
valued probabilities as outputs.

Consider the example shown in Figure 1. Given independent
stochastic bit streams as inputs, an AND gate performs mul-
tiplication: it produces an output bit stream with a probability
that is the product of the probabilities of the input bit streams.
In prior work, we proposed a general method for synthesizing
arbitrary functions through logical computation on stochastic
bit streams [1], [2].

Stochastic bit streams can be generated with pseudo-random
constructs, such as linear feedback shift registers. Alterna-
tively, if physical sources of randomness are available, these
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Fig. 1: An AND gate multiplies the probabilities of stochastic bit
streams. Here the input streams have probabilities 0.8 and 0.5. The
probability of the output stream is 0.8× 0.5 = 0.4.

could be used directly. For example, in [3], the authors
propose a so-called probabilistic CMOS (PCMOS) construct
that generates random bits from intrinsic sources of noise.
In [4], PCMOS switches are applied to form a probabilistic
system-on-a-chip (PSOC); this system provides intrinsic ran-
domness to the application layer, so that it can be exploited
by probabilistic algorithms.

For schemes that generate stochastic bit streams from phys-
ical sources, a significant limitation is the cost of generating
different probability values. For instance, if each probability
value is determined by a specific voltage level, different volt-
age levels are required to generate different probability values.
For an application that requires many different values, many
voltage regulators are required; this might be prohibitively
costly in terms of area as well as energy.

This paper presents a synthesis strategy to mitigate this
issue: we describe a method for transforming a set of source
probabilities into different target probabilities entirely through
combinational logic. For what follows, when we say “with
probability p,” we mean “with a probability p of being at log-
ical one.” When we say “a circuit,” we mean a combinational
circuit built with logic gates.

Example 1
Suppose that we have a set of source probabilities S =
{0.4, 0.5}. As illustrated in Figure 2, we can transform this set
into new probabilities:

1) Given an input x with probability 0.4, an inverter will have
an output z with probability 0.6 since

P (z = 1) = P (x = 0) = 1− P (x = 1). (1)

2) Given inputs x and y with independent probabilities 0.4
and 0.5, an AND gate will have an output z with probabil-
ity 0.2 since

P (z = 1) = P (x = 1, y = 1)
= P (x = 1)P (y = 1).

(2)

3) Given inputs x and y with independent probabilities 0.4
and 0.5, a NOR gate will have an output z with probability
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Fig. 2: An illustration of transforming a set of source probabilities
into new probabilities with logic gates. (a): An inverter implementing
pz = 1− px. (b): An AND gate implementing pz = px · py . (c): A
NOR gate implementing pz = (1− px) · (1− py).

0.3 since
P (z = 1) = P (x = 0, y = 0) = P (x = 0)P (y = 0)

= (1− P (x = 1))(1− P (y = 1)).

Thus, using combinational logic, we obtain the set of probabil-
ities {0.2, 0.3, 0.6} from the set {0.4, 0.5}. �

Motivated by this example, we consider the problem of how
to synthesize combinational logic to transform a set of source
probabilities S = {p1, p2, . . . , pn} into a target probability q.
We assume that the probabilistic sources are all independent.
We consider three scenarios:

1) Scenario One: Consider the situation in which we have
the flexibility to choose the probabilities produced by
physical sources, say by setting them with specific voltage
values. We can produce multiple independent copies of
each probability cheaply, since each copy uses the same
voltage level. However, generating different probabilities
is costly, since this entails generating different voltage
levels. Here we seek to minimize the size of the source
set of probabilities S, assuming that each probability in
S can be used an arbitrary number of times. (We say
that the probability can be duplicated.) The problem is to
find a small set S and to demonstrate how to synthesize
logic that transforms values from this set into an arbitrary
target probability q.

2) Scenario Two: Consider the situation in which there is
no flexibility with the random sources; these produce a
fixed set of probabilities S. The set S can be a multiset,
i.e., one that could contain multiple elements of the same
value. However, we cannot duplicate the probabilities; we
have to work with what is given to us. The problem is
how to synthesize logic that has input probabilities taken
from S and produces an output probability q, where each
element in S can be used as an input probability at most
once.

3) Scenario Three: Consider the situation in which we
have the flexibility to choose the probabilities but the
values we choose cannot be duplicated cheaply; it costs
as much to generate each copy as any other value. This

situation occurs if we use pseudo-random constructs such
as linear feedback shift registers: the cost of each pseudo-
random bit stream is the same no matter what probability
value is realized. Suppose that we establish a budget
of n random or pseudo-random sources. The problem
is to find a set S of n probabilities such that we can
synthesize logic that transforms values from this set into
an arbitrary probability q. Here the elements of S cannot
be duplicated; again, S can be a multiset.

To summarize, we consider scenarios that differ in respect to:
1) Whether the set S is specified or not.
2) Whether the probabilities from S can be duplicated or

not.
Our contributions are:

1) For Scenario One, we demonstrate that a particular set
consisting of only two elements, S = {0.4, 0.5}, can be
transformed into arbitrary decimal probabilities. Further,
we propose an algorithm based on fraction factorization
to optimize the depth of the resulting circuit. Figure 3
shows a circuit synthesized by our algorithm to realize the
decimal output probability 0.119 from the input probabil-
ities 0.4 and 0.5. The circuit consists of AND gates and
inverters: each AND gate performs a multiplication of its
inputs and each inverter performs a one-minus operation
of its input.
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Fig. 3: A circuit synthesized by our algorithm to realize the decimal
output probability 0.119 from the input probabilities 0.4 and 0.5.

2) Also for Scenario One, we prove that for any given
integer n ≥ 2, there exists a set S consisting of a single
element that can be transformed into arbitrary base-n
fractional probabilities of the form m

nd .
3) For Scenario Two, we solve the problem by transforming

it into a linear 0-1 programming problem. Although
approximate, the solution is optimal in terms of the
difference between the target probability and the actual
output probability.

4) Also for Scenario Two, we provide a greedy algorithm.
Although the solution that it yields is not optimal, the
difference between the target probability and the actual
output probability is bounded. The algorithm runs very
efficiently, yielding a solution in O(n2) time, where n is
the cardinality of the set S.

5) For Scenario Three, we provide an optimal choice of the
set S. Specifically, we first define a quality measure H(S)
for each choice S consisting of arbitrary probabilities. We
prove that if the cardinality of S is n, then a lower bound

on H(S) is
1

4(22n − 1)
. Then we show that the set of

source probabilities

S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n− 1}
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achieves the lower bound.

II. RELATED WORK

The task of analyzing circuits operating on probabilistic in-
puts is well understood [5]. Aspects such as signal correlations
of reconvergent paths must be taken into account. Algorithmic
details for such analysis were first fleshed out by the testing
community [6]. They have also found mainstream application
for tasks such as timing and power analysis [7], [8].

The problem of synthesizing circuits to transform a given
set of probabilities into a new set of probabilities appears
in an early set of papers by Gill [9], [10]. He focused on
synthesizing sequential state machines for this task.

Motivated by problems in neural computation, Jeavons et
al. considered the problem of transforming stochastic binary
sequences through what they call “local algorithms:” fixed
functions applied to concurrent bits in different sequences [11].
This is equivalent to performing operations on stochastic bit
streams with combinational logic, so in essence they were
considering the same problem as we are. Their main result was
a method for generating binary sequences with probability m

nd

from a set of stochastic binary sequences with probabilities in
the set { 1

n , 2
n , . . . , n−1

n }. This is equivalent to our Theorem 2.
In contrast to the work of Jeavons et al., our primary focus is
on minimizing the number of source probabilities needed to
realize arbitrary base-n fractional probabilities.

The proponents of PCMOS discussed the problem of syn-
thesizing combinational logic to transform probability val-
ues [4]. These authors suggested using a tree-based circuit
to realize a set of target probabilities. This was positioned as
future work; no details were given.

Wilhelm and Bruck proposed a general framework for
synthesizing switching circuits to achieve a desired proba-
bility [12]. Switching circuits were originally discussed by
Shannon [13]. These consist of relays that are either open
or closed; the circuit computes a logical value of one if
there exists a closed path through the circuit. Wilhelm and
Bruck considered stochastic switching circuits, in which each
switch has a certain probability of being open or closed. They
proposed an algorithm that generates the requisite stochastic
switching circuit to compute any binary probability.

Zhou and Bruck generalized Wilhelm and Bruck’s
work [14]. They considered the problem of synthesizing
a stochastic switching circuit to realize an arbitrary base-
n fractional probability m

nd from a probabilistic switch set
{ 1

n , 2
n , . . . , n−1

n }. They showed that when n is a multiple
of 2 or 3, such a realization is possible. However, for any
prime number n greater than 3, there exists a base-n fractional
probability that cannot be realized by any stochastic switching
circuit.

In contrast to the work of Gill, to that of Wilhelm and
Bruck, and to that of Zhou and Bruck, we consider combina-
tional circuits: memoryless circuits consisting of logic gates.
Our approach dovetails nicely with the circuit-level PCMOS
constructs. It is orthogonal to the switch-based approach of
Zhou and Bruck. Note that Zhou and Bruck assume that the
probabilities in the given set S can be duplicated. We also
consider the case where they cannot.

III. SCENARIO ONE: SET S IS NOT SPECIFIED AND THE
ELEMENTS CAN BE DUPLICATED

In this scenario, we assume that the set S of probabilities is
not specified. Once the set has been determined, each element
of the set can be used as an input probability an arbitrary
number of times. The inputs are all assumed to be independent.
As discussed in the introduction, we seek a set S of small size.

A. Generating Decimal Probabilities
In this section, we consider the case where the target

probabilities are represented as decimal numbers. The problem
is to find a small set S of source probabilities that can be
transformed into an arbitrary target decimal probability. We
provide a set S consisting of two elements.

Theorem 1
With circuits consisting of fanin-two AND gates and inverters,
we can transform the set of source probabilities {0.4, 0.5} into
an arbitrary decimal probability. �

Proof: First, we note that an inverter with a probabilistic
input gives an output probability equal to one minus the input
probability, as was shown in Equation (1). An AND gate with
two independent inputs performs a multiplication of the input
probabilities, as was shown in Equation (2). Thus, we need
to prove: with the two operations 1 − x and x · y, we can
transform the values from the set {0.4, 0.5} into arbitrary
decimal fractions. We prove this statement by induction on
the number of digits n after the decimal point.

Base case:
1) n = 0. The values 0 and 1 correspond to deterministic

inputs of zero and one, respectively.
2) n = 1. We can generate 0.1, 0.2, and 0.3 as follows:

0.1 = 0.4× 0.5× 0.5,

0.2 = 0.4× 0.5,

0.3 = (1− 0.4)× 0.5.

Since we can generate the decimal fractions 0.1, 0.2, 0.3,
and 0.4, we can generate 0.6, 0.7, 0.8, and 0.9 with an
extra 1−x operation. Together with the source value 0.5,
we can transform the pair of values 0.4 and 0.5 into any
decimal fraction with one digit after the decimal point.

Inductive step:
Assume that the statement holds for all m ≤ (n−1). Consider
an arbitrary decimal fraction z with n digits after the decimal
point. Let u = 10n · z. Here u is an integer.

Consider the following four cases.
1) The case where 0 ≤ z ≤ 0.2.

a) The integer u is divisible by 2. Let w = 5z. Then
0 ≤ w ≤ 1 and w = (u/2) · 10−n+1, having at most
(n− 1) digits after the decimal point. Thus, based on
the induction hypothesis, we can generate w. It follows
that z can be generated as z = 0.4× 0.5× w.

b) The integer u is not divisible by 2 and 0 ≤ z ≤ 0.1. Let
w = 10z. Then 0 ≤ w ≤ 1 and w = u·10−n+1, having
at most (n − 1) digits after the decimal point. Thus,
based on the induction hypothesis, we can generate w.
It follows that z can be generated as z = 0.4× 0.5×
0.5× w.
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c) The integer u is not divisible by 2 and 0.1 < z ≤ 0.2.
Let w = 2 − 10z. Then 0 ≤ w < 1 and w = 2 −
u · 10−n+1, having at most (n − 1) digits after the
decimal point. Thus, based on the induction hypothesis,
we can generate w. It follows that z can be generated
as z = (1− 0.5× w)× 0.4× 0.5.

2) The case where 0.2 < z ≤ 0.4.
a) The integer u is divisible by 4. Let w = 2.5z. Then

0 < w ≤ 1 and w = (u/4) · 10−n+1, having at most
(n− 1) digits after the decimal point. Thus, based on
the induction hypothesis, we can generate w. It follows
that z can be generated as z = 0.4× w.

b) The integer u is not divisible by 4 but is divisible by 2.
Let w = 2 − 5z. Then 0 ≤ w < 1 and w = 2 −
(u/2) · 10−n+1, having at most (n− 1) digits after the
decimal point. Thus, based on the induction hypothesis,
we can generate w. It follows that z can be generated
as z = (1− 0.5× w)× 0.4.

c) The integer u is not divisible by 2 and 0.2 < u ≤ 0.3.
Let w = 10z − 2. Then 0 < w ≤ 1 and w = u ·
10−n+1 − 2, having at most (n − 1) digits after the
decimal point. Thus, based on the induction hypothesis,
we can generate w. It follows that z can be generated
as z = (1− (1− 0.5× w)× 0.5)× 0.4.

d) The integer u is not divisible by 2 and 0.3 < u ≤ 0.4.
Let w = 4 − 10z. Then 0 ≤ w < 1 and w = 4 −
u · 10−n+1, having at most (n − 1) digits after the
decimal point. Thus, based on the induction hypothesis,
we can generate w. It follows that z can be generated
as z = (1− 0.5× 0.5× w)× 0.4.

3) The case where 0.4 < z ≤ 0.5. Let w = 1−2z. Then 0 ≤
w < 0.2 and w falls into case 1. Thus, we can generate
w. It follows that z can be generated as z = 0.5×(1−w).

4) The case where 0.5 < z ≤ 1. Let w = 1 − z. Then
0 ≤ w < 0.5 and w falls into one of the above three
cases. Thus, we can generate w. It follows that z can be
generated as z = 1− w.

For all of the above cases, we proved that we can transform
the pair of values 0.4 and 0.5 into z with the two operations
1−x and x · y. Thus, we proved the statement for all m ≤ n.
By induction, the statement holds for all integers n.

Based on the proof above, we derive an algorithm to
synthesize a circuit that transforms the probabilities from the
set {0.4, 0.5} into an arbitrary decimal probability z. This is
shown in Algorithm 1.

Algorithm 1 Synthesize a circuit consisting of AND gates and
inverters that transforms the probabilities from the set {0.4, 0.5} into
a target decimal probability.

1: {Given an arbitrary decimal probability 0 ≤ z ≤ 1.}
2: Initialize ckt;
3: while GetDigits(z) > 1 do
4: (ckt, z)⇐ ReduceDigit(ckt, z);
5: ckt⇐ AddBaseCkt(ckt, z); {Base case: z has at most one digit

after the decimal point.}
6: return ckt;

The function GetDigits(z) in Algorithm 1 returns the num-
ber of digits after the decimal point of z. The algorithm iterates
until z has at most one digit after the decimal point. During
each iteration, it calls the function ReduceDigit(ckt, z). This
function, shown in Algorithm 2, converts z into a number w

with one less digit after the decimal point than z. It is imple-
mented based on the inductive step in the proof of Theorem 1.
Finally, the algorithm calls the function AddBaseCkt(ckt, z)
to add logic gates to realize a number z with at most one digit
after the decimal point; this corresponds to the base case of
the proof.

Algorithm 2 ReduceDigit(ckt, z)

1: {Given a partial circuit ckt and an arbitrary decimal probability
0 ≤ z ≤ 1.}

2: n⇐ GetDigits(z);
3: if z > 0.5 then {Case 4}
4: z ⇐ 1− z; AddInverter(ckt);
5: if 0.4 < z ≤ 0.5 then {Case 3}
6: z ⇐ z/0.5; AddAND(ckt, 0.5);
7: z ⇐ 1− z; AddInverter(ckt);
8: if z ≤ 0.2 then {Case 1}
9: z ⇐ z/0.4; AddAND(ckt, 0.4);

10: z ⇐ z/0.5; AddAND(ckt, 0.5);
11: if GetDigits(z) < n then
12: go to END;
13: if z > 0.5 then
14: z ⇐ 1− z; AddInverter(ckt);
15: z = z/0.5; AddAND(ckt, 0.5);
16: else {Case 2: 0.2 < z ≤ 0.4}
17: z ⇐ z/0.4; AddAND(ckt, 0.4);
18: if GetDigits(z) < n then
19: go to END;
20: z ⇐ 1− z; AddInverter(ckt);
21: z ⇐ z/0.5; AddAND(ckt, 0.5);
22: if GetDigits(z) < n then
23: go to END;
24: if z > 0.5 then
25: z ⇐ 1− z; AddInverter(ckt);
26: z = z/0.5; AddAND(ckt, 0.5);
27: END: return ckt, z;

The function ReduceDigit(ckt, z) in Algorithm 2 builds
the circuit from the output back to the inputs. During its
construction, the circuit always has a single dangling input.
Initially, the circuit is just a wire connecting an input to the
output. The function AddInverter(ckt) attaches an inverter
to the dangling input creating a new dangling input. The
function AddAND(ckt, p) attaches a fanin-two AND gate to
the dangling input; one of the AND gate’s inputs is the
new dangling input; the other is set to a random source of
probability p. In Algorithm 2, Lines 3–4 correspond to Case
4 in the proof; Lines 5–7 correspond to Case 3; Lines 8–15
correspond to Case 1; and Lines 16–26 correspond to Case 2.

The area complexity of the synthesized circuit is linear in
the number of digits after the target value’s decimal point,
since at most 3 AND gates and 3 inverters are needed to
generate a value with n digits after the decimal point from a
value with (n−1) digits after the decimal point.1 The number
of AND gates in the synthesized circuit is at most 3n.

Example 2
We show how to generate the probability value 0.757. Based
on Algorithm 1, we can derive a sequence of operations that

1In Case 3, z is transformed into w = 1− 2z where w falls in Case 1(a).
Thus, we actually need only 3 AND gates and 1 inverter for Case 3. For the
other cases, it is not hard to see that we need at most 3 AND gates and 3
inverters.
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transform 0.757 to 0.7:

0.757 1−=⇒ 0.243
/0.4
=⇒ 0.6075 1−=⇒ 0.3925

/0.5
=⇒ 0.785

1−=⇒ 0.215
/0.5
=⇒ 0.43,

0.43
/0.5
=⇒ 0.86 1−=⇒ 0.14

/0.4
=⇒ 0.35

/0.5
=⇒ 0.7.

Since 0.7 can be realized as 0.7 = 1−(1−0.4)×0.5, we obtain
the circuit shown in Figure 4. (Note that here we use a black dot
to represent an inverter.) �
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Fig. 4: A circuit transforming the set of source probabilities
{0.4, 0.5} into a decimal output probability of 0.757.

Remarks: One may question the usefulness of synthesizing
a circuit that generates arbitrary decimal fractions. Wilhelm
and Bruck proposed a scheme for synthesizing switching
circuits that generate arbitrary binary probabilities [12]. By
mapping every switch connected in series to an AND gate
and every switch connected in parallel to an OR gate, we
can easily derive a combinational circuit that generates an
arbitrary binary probability. Since any decimal fractional value
can be approximated by a binary fractional value, we can build
combinational circuits implementing decimal probabilities this
way. However, the circuits synthesized by our procedure are
less costly in terms of area.

To see this, consider a decimal fraction q with n digits.
The circuit that Algorithm 1 synthesizes to generate q has
at most 3n AND gates. For the approximation error of the
binary fraction for q to be below 1/10n, the number of digits
m of the binary fraction should be greater than n log2 10.
In [12], it is proved that the minimal number of probabilistic
switches needed to generate a binary fraction of m digits
is m. Assuming that we build an equivalent combinational
circuit consisting of AND gates and inverters, we need m− 1
AND gates to implement the binary fraction.2 Thus, the
combinational logic realizing the binary approximation needs
more than n log2 10 ≈ 3.32n AND gates. This is more than
the number of AND gates in the circuit synthesized by our
procedure.

B. Reducing the Depth
The circuits produced by Algorithm 1 have a linear topology

(i.e., each gate adds to the depth of the circuit). For practical
purposes, we want circuits with shallower depth. In this
section, we explore two kinds of optimizations for reducing
the depth.

The first kind of optimization is at the logic level. The circuit
synthesized by Algorithm 1 is composed of inverters and

2Of course, an OR gate can be converted into an AND gate with inverters
at both the inputs and the output.
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Fig. 5: An illustration of balancing to reduce the depth of the circuit.
Here a and b are primary inputs. (a): The circuit before balancing.
(b): The circuit after balancing.

AND gates. We can reduce its depth by properly repositioning
certain AND gates, as illustrated in Figure 5. We refer to such
optimization as balancing.

The second kind of optimization is at a higher level, based
on the factorization of the decimal fraction. We use the
following example to illustrate the basic idea.

Example 3
Suppose we want to generate the decimal probability value
0.49.

Method based on Algorithm 1: We can derive the following
transformation sequence:

0.49
/0.5
=⇒ 0.98 1−=⇒ 0.02

/0.4
=⇒ 0.05

/0.5
=⇒ 0.1.

The synthesized circuit is shown in Figure 6(a). Notice that the
circuit is balanced; it has five AND gates and a depth of four.3

Method based on factorization: Notice that 0.49 = 0.7 × 0.7.
Thus, we can generate the probability 0.7 twice and feed these
values into an AND gate. The synthesized circuit is shown in
Figure 6(b). Compared to the circuit in Figure 6(a), both the
number of AND gates and the depth of the circuit are reduced.
�

Algorithm 3 shows the procedure that synthesizes the
circuit based on the factorization of the decimal fraction.
The factorization is actually carried out on the numerator. A
crucial function is PairCmp(al, ar, bl, br), which compares the
integer factor pair (al, ar) with the pair (bl, br) and returns a
positive (negative) value if the pair (al, ar) is better (worse)
than the pair (bl, br). Algorithm 4 shows how the function
PairCmp(al, ar, bl, br) is implemented.

The quality of a factor pair (al, ar) should reflect the depth
of the circuit that generates the original probability based
on that factorization. For this purpose, we define a function
EstDepth(x) to estimate the depth of the circuit that generates
the decimal fraction with a numerator x. If 1 ≤ x ≤ 9, the
corresponding fraction is x/10. EstDepth(x) is set as the depth

3When counting depth, we ignore inverters.
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Fig. 6: Synthesizing combinational logic to generate the probability
0.49. (a): The circuit synthesized through Algorithm 1. (b): The
circuit synthesized based on fraction factorization.

Algorithm 3 ProbFactor(ckt, z)

1: {Given a partial circuit ckt and an arbitrary decimal probability
0 ≤ z ≤ 1.}

2: n⇐ GetDigits(z);
3: if n ≤ 1 then
4: ckt⇐ AddBaseCkt(ckt, z);
5: return ckt;
6: u⇐ 10nz; (ul, ur)⇐ (1, u); {u is the numerator of the fraction

z}
7: for each factor pair (a, b) of u do
8: if PairCmp(ul, ur, a, b) < 0 then
9: (ul, ur)⇐ (a, b); {Choose the best factor pair for z}

10: w ⇐ 10n − u; (wl, wr)⇐ (1, w);
11: for each factor pair (a, b) of w do
12: if PairCmp(wl, wr, a, b) < 0 then
13: (wl, wr)⇐ (a, b); {Choose the best factor pair for 1− z}
14: if PairCmp(ul, ur, wl, wr) < 0 then
15: (ul, ur)⇐ (wl, wr); z ⇐ w/10n;
16: AddInverter(ckt);
17: if IsTrivialPair(ul, ur) then {ul = 1 or ur = u}
18: (ckt, z)⇐ ReduceDigit(ckt, z);
19: ckt⇐ ProbFactor(ckt, z);
20: return ckt;
21: nl ⇐ dlog10(ul)e; nr ⇐ dlog10(ur)e;
22: if nl + nr > n then {Unable to factor z into two decimal

fractions in the unit interval}
23: (ckt, z)⇐ ReduceDigit(ckt, z);
24: ckt⇐ ProbFactor(ckt, z);
25: return ckt;
26: zl ⇐ ul/10nl ; zr ⇐ ur/10nr ;
27: cktl ⇐ ProbFactor(cktl, zl);
28: cktr ⇐ ProbFactor(cktr, zr);
29: Connect the input of ckt to an AND gate with two inputs as cktl

and cktr;
30: if nl + nr < n then
31: AddExtraLogic(ckt, n− nl − nr);
32: return ckt;

of the circuit that generates the fraction x/10, which is

EstDepth(x) =


0, x = 4, 5, 6,

1, x = 2, 3, 7, 8,

2, x = 1, 9.

When x ≥ 10, we use a simple heuristic to estimate the
depth: we let EstDepth(x) = dlog10(x)e + 1. The intuition
behind this is that the depth of the circuit is a monotonically
increasing function of the number of digits of x. The estimated
depth of the circuit that generates the original fraction based

on the factor pair (al, ar) is

max{EstDepth(al), EstDepth(ar)}+ 1. (3)

The function PairCmp(al, ar, bl, br) essentially compares
the quality of pair (al, ar) and pair (bl, br) based on Equa-
tion (3). Further details are given in Algorithm 4.

Algorithm 4 PairCmp(al, ar, bl, br)

1: {Given two integer factor pairs (al, ar) and (bl, br)}
2: cl ⇐ EstDepth(al); cr ⇐ EstDepth(ar);
3: dl ⇐ EstDepth(bl); dr ⇐ EstDepth(br);
4: Order(cl, cr); {Order cl and cr , so that cl ≤ cr}
5: Order(dl, dr); {Order dl and dr , so that dl ≤ dr}
6: if cr < dr then {The circuit w.r.t. the first pair has smaller

depth}
7: return 1;
8: else if cr > dr then {The circuit w.r.t. the first pair has larger

depth}
9: return -1;

10: else
11: if cl < dl then {The circuit w.r.t. the first pair has fewer

ANDs}
12: return 1;
13: else if cl > dl then {The circuit w.r.t. the first pair has more

ANDs}
14: return -1;
15: else
16: return 0;

In Algorithm 3, Lines 2–5 correspond to the trivial fractions.
If the fraction z is non-trivial, Lines 6–9 choose the best factor
pair (ul, ur) of u, where u is the numerator of the fraction z.
Lines 10–13 choose the best factor pair (wl, wr) of w, where
w is the numerator of the fraction 1− z. Finally, Lines 14–16
choose the better factor pair of (ul, ur) and (wl, wr). Here, we
consider the factorization on both z and 1− z, since in some
cases the latter might be better than the former. An example
is z = 0.37. Note that 1 − z = 0.63 = 0.7 × 0.9; this has a
better factor pair than z itself.

After obtaining the best factor pair, we check whether we
can use it. Lines 17–20 check whether the factor pair (ul, ur)
is trivial; a factor pair is considered trivial if ul = 1 or
ur = 1. If the best factor pair is trivial, we call the function
ReduceDigit(ckt, z) in Algorithm 2 to transform z into a new
value with one less digit after the decimal point. Then we
perform factorization on the new value.

If the best factor pair is non-trivial, Lines 21–25 continue
to check whether the factor pair can be transformed into two
decimal fractions in the unit interval. Let nl be the number of
digits of the integer ul and nr be the number of digits of the
integer ur. If nl+nr > n, where n is the number of digits after
the decimal point of z, then it is impossible to use the factor
pair (ul, ur) to factorize z. For example, consider z = 0.143.
Although we could factorize 143 as 11×13, we cannot use the
factor pair (11, 13) since the factorization 0.11× 1.3 and the
factorization 1.1× 0.13 both contain a fraction larger than 1;
a probability value can never be larger than 1.

Finally, if it is possible to use the best factor pair, Lines 26–
29 synthesize two circuits for fractions ul/10nl and ur/10nr ,
respectively, and then combine these two circuits with an AND
gate. Lines 30–31 check whether n > nl + nr. If this is the
case, we have

z = u/10n = ul/10nl · ur/10nr · 0.1n−nl−nr .



7

We need to add an extra AND gate with one input prob-
ability as 0.1n−nl−nr and the other input probability as
ul/10nl · ur/10nr . The extra logic is added through the
function AddExtraLogic(ckt, m).

C. Empirical Validation
We empirically validate the effectiveness of the synthesis

scheme that was presented in the previous section. For logic-
level optimization, we use the “balance” command of the
synthesis tool ABC [15]. We find that it is very effective in
reducing the depth of tree-style circuits.4

Table I compares the quality of the circuits generated by
three different schemes. The first scheme, called “Basic,”
is based on Algorithm 1. It generates a linear-style circuit.
The second scheme, called “Basic+Balance,” combines Al-
gorithm 1 and the logic-level balancing algorithm. The third
scheme, called “Factor+Balance,” combines Algorithm 3 and
the logic-level balancing algorithm. We perform experiments
on a set of target decimal probabilities that have n digits after
the decimal point and average the results. Table I shows the
results for n ranging from 2 to 12. When n ≤ 5, we synthesize
circuits for all possible decimal probabilities with n digits after
the decimal point. When n ≥ 6, we randomly choose 100,000
decimal probabilities with n digits after the decimal point as
the synthesis targets. We show the average number of AND
gates, the average depth, and the average CPU runtime.
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Basic+Balance Depth

Factor+Balance #AND

Factor+Balance Depth

Fig. 7: Average number of AND gates and depth of the circuits
versus n.

From Table I, we can see that both the “Basic+Balance”
and the “Factor+Balance” synthesis schemes have only
millisecond-order CPU runtimes. Compared to the “Ba-
sic+Balance” scheme, the “Factor+Balance” scheme reduces
the average number of AND gates by 10% and the average
depth by more than 10%, for all n. The percentage of reduction
of the average depth increases with increasing n. For n = 12,
the average depth of the circuits is reduced by more than 50%.

In Figure 7, we plot the average number of AND gates
and the average depth of the circuits versus n for the
“Basic+Balance” and “Factor+Balance” schemes. The figure

4We find that the other synthesis commands of ABC such as “rewrite” do
not affect the depth or the number of AND gates of a tree-style AND-inverter
graph.

shows that the “Factor+Balance” scheme is clearly superior.
The average number of AND gates in the circuits synthesized
by both schemes increases linearly with n. The average depth
of the circuits synthesized by the “Basic+Balance” scheme
also increases linearly with n. In contrast, the average depth
of the circuits synthesized by the “Factor+Balance” scheme
increases logarithmically with n.

D. Generating Base-n Fractional Probabilities
In Section III-A, we showed that there exists a pair of

probabilities that can be transformed into an arbitrary decimal
probability. In [16], we show that we can further reduce
the number of source probabilities down to one: there exists
a real number 0 ≤ r ≤ 1 that can be transformed into
an arbitrary decimal probability with combinational logic.
However, this number r is an irrational root of a polynomial.
Here, we generalize this result. We show that for any integer
n ≥ 2, there exists a real number 0 ≤ r ≤ 1 that can be
transformed into an arbitrary base-n fractional probability m

nd

with combinational logic.
First, we show that we can transform a set of probabilities

{ 1
n , 2

n , . . . , n−1
n } into an arbitrary base-n fractional probabil-

ity m
nd .

Theorem 2
Let n ≥ 2 be an integer. For any integers d ≥ 1 and
0 ≤ m ≤ nd, we can transform the set of probabilities
{ 1

n , 2
n , . . . , n−1

n } into a base-n fractional probability m
nd with

a circuit having 2d− 1 inputs. �

Proof: We prove the above claim by induction on d.

Base case: When d = 1, we can obtain each base-n fractional
probability m

n (0 ≤ m ≤ n) directly from an input since the
input probability set is { 1

n , . . . , n−1
n } and the probabilities

0 and 1 correspond to deterministic values of zero and one,
respectively.

Inductive step: Assume the claim holds for d − 1. Now
consider any integer 0 ≤ m ≤ nd. We can write m as
m = and−1 + b with an integer 0 ≤ a < n and an integer
0 ≤ b ≤ nd−1.

Consider a multiplexer with data input x1 and x2, selecting
input s, and output y, as shown in Figure 8. The Boolean
function of the multiplexer is:

y = (x1 ∧ s) ∨ (x2 ∧ ¬s).5

By the induction hypothesis, we can transform the set of
probabilities { 1

n , 2
n , . . . , n−1

n } into the probability b
nd−1 with

a circuit Q that has 2d − 3 inputs. In order to generate the
output probability m

nd , we let the inputs x1 and x2 of the
multiplexer have probability a+1

n and a
n , respectively, and we

connect the input s to the output of a circuit Q that generates
the probability b

nd−1 , as shown in Figure 8. Note that the inputs
to x1 and x2 are either probabilistic inputs with a value from
the set { 1

n , . . . , n−1
n }, or deterministic inputs of zero or one.

With the primary inputs of the entire circuit being independent,

5When discussing Boolean functions, we use ∧, ∨, and ¬ to represent
logical AND, OR, and negation, respectively. We adopt this convention
since we use + and · to represent arithmetic addition and multiplication,
respectively.
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TABLE I: A comparison of the basic synthesis scheme, the basic synthesis scheme with balancing, and the factorization-based synthesis
scheme with balancing.

Number Basic Basic+Balance Factor+Balance
of Digits #AND Depth #AND Depth Runtime #AND Depth Runtime #AND Imprv. (%) Depth Imprv. (%)

n a1 d1 (ms) a2 d2 (ms) 100(a1 − a2)/a1 100(d1 − d2)/d1

2 3.67 3.67 3.67 2.98 0.22 3.22 2.62 0.22 12.1 11.9
3 6.54 6.54 6.54 4.54 0.46 5.91 3.97 0.66 9.65 12.5
4 9.47 9.47 9.47 6.04 1.13 8.57 4.86 1.34 9.45 19.4
5 12.43 12.43 12.43 7.52 0.77 11.28 5.60 0.94 9.21 25.6
6 15.40 15.40 15.40 9.01 1.09 13.96 6.17 1.48 9.36 31.5
7 18.39 18.39 18.39 10.50 0.91 16.66 6.72 1.28 9.42 35.9
8 21.38 21.38 21.38 11.99 0.89 19.34 7.16 1.35 9.55 40.3
9 24.37 24.37 24.37 13.49 0.75 22.05 7.62 1.34 9.54 43.6

10 27.37 27.37 27.37 14.98 1.09 24.74 7.98 2.41 9.61 46.7
11 30.36 30.36 30.36 16.49 0.92 27.44 8.36 2.93 9.61 49.3
12 33.35 33.35 33.35 17.98 0.73 30.13 8.66 4.13 9.65 51.8

MUX
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Q
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x2
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y

⁞

n
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xP

1
)1( 1

+
==

n

a
xP == )1( 2

1
)1(

−
==

dn

b
sP

dn

m
yP == )1(

Fig. 8: The circuit generating the base-n fractional probability m
nd ,

where m is written as m = and−1 + b with 0 ≤ a < n and 0 ≤
b ≤ nn−1. The circuit Q in the figure generates the base-n fractional
probability b

nd−1 .

all the inputs of the multiplexer are also independent. The
probability that y is one is

P (y = 1) = P (x1 = 1, s = 1) + P (x2 = 1, s = 0)
= P (x1 = 1)P (s = 1) + P (x2 = 1)P (s = 0)

=
a + 1

n

b

nd−1
+

a

n

(
1− b

nd−1

)
=

and−1 + b

nd
=

m

nd
.

Therefore, we can transform the set of probabilities
{ 1

n , 2
n , . . . , n−1

n } into the probability m
nd with a circuit that

has 2d− 3 + 2 = 2d− 1 inputs. Thus, the claim holds for d.
By induction, the claim holds for all d ≥ 1.

Remarks:
1) An equivalent result to Theorem 2 can be found in [11].

There it is couched in information theoretic language
in terms of concurrent operations on random binary
sequences.

2) Our proof of Theorem 2 is constructive. It shows that we
can synthesize a chain of d− 1 multiplexers to generate
a base-n fractional probability m

nd .
3) If some of the inputs to the chain of multiplexers are

deterministic zeros or ones, we can further simplify the
circuit. In such cases, the number of inputs of the entire
circuit and the area of the circuit can be further reduced.

Next, we prove a theorem about the existence of a single
real value that can be transformed into any value in a given
set of rational probabilities through combinational logic.

Theorem 3
For any finite set of rational probabilities R =
{p1, p2, . . . , pM}, there exists a real number 0 < r < 1
that can be transformed into probabilities in the set R through
combinational logic. �

Proof: We only need to prove that the statement is
true under the condition that for all 1 ≤ i ≤ M , 0 ≤
pi ≤ 0.5. In fact, given a general set of probabilities R =
{p1, p2, . . . , pM}, we can derive a new set of probabilities
R∗ = {p∗1, p∗2, . . . , p∗M}, such that for all 1 ≤ i ≤M ,

p∗i =

{
pi, if pi ≤ 0.5,

1− pi, if pi > 0.5.

Then, for all 1 ≤ i ≤ M , the element p∗i of R∗ satisfies
that 0 ≤ p∗i ≤ 0.5. Once we prove that there exists a real
number 0 < r < 1 which can be transformed into any of
the probabilities in the set R∗, then any probability in the
original set R can also be generated from this value r: to
generate pi = p∗i , we use the same circuit that generates the
probability p∗i ; to generate pi = 1−p∗i , we append an inverter
to the output.

Therefore, we assume that for all 1 ≤ i ≤ M , 0 ≤ pi ≤
0.5. Further, without loss of generality, we can assume that
0 ≤ p1 < · · · < pM ≤ 0.5. Since probability 0 can be
realized trivially by a deterministic value of zero, we assume
that p1 > 0. Since p1, . . . , pM are rational probabilities, there
exist positive integers a1, . . . , aM and b such that for all
1 ≤ i ≤ M , pi = ai

b . Since 0 < p1 < · · · < pM ≤ 0.5,
we have 0 < a1 < · · · < aM ≤ b

2 .
First, it is not hard to see that there exists a positive

integer h such that 2h−1 > aMh + 1. For k = 1, . . . , h, let

ck =

⌊(
h
k

)
aM

⌋
, where bxc represents the largest integer less

than or equal to x.

We will prove

aM

h∑
k=1

ck > 2h−1. (4)
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In fact,

2h − aM

h∑
k=1

ck =
h∑

k=0

(
h

k

)
−

h∑
k=1

⌊(
h
k

)
aM

⌋
aM

= 1 +
h∑

k=1

((
h
k

)
aM
−

⌊(
h
k

)
aM

⌋)
aM .

Since x− bxc < 1, we have

2h − aM

h∑
k=1

ck < 1 +
h∑

k=1

aM = aMh + 1 < 2h−1,

or

aM

h∑
k=1

ck > 2h−1.

Now consider the polynomial

f(x) =
h∑

k=1

ckxk(1− x)h−k.

Note that f(0) = 0 and f(0.5) =
1
2h

h∑
k=1

ck. Based on Equa-

tion (4) and the fact that aM ≤ b
2 , we have

f(0.5) >
1

2aM
≥ 1

b
.

Thus, f(0) = 0 < 1
b < f(0.5). Based on the continuity of the

polynomial f , there exists a real number 0 < r < 0.5 < 1
such that f(r) = 1

b .
For all i = 1, . . . ,M , set li,0 = 0. For all i = 1, . . . ,M and

all k = 1, 2, . . . , h, set li,k = aick. Since for all k = 1, . . . , h,

ck is an integer and 0 ≤ ck ≤
(
h
k

)
aM

, then for all i = 1, . . . ,M

and all k = 1, 2, . . . , h, li,k is an integer and 0 ≤ li,k =
aick ≤ aMck ≤

(
h
k

)
.

For k = 0, 1, . . . , h, let Ak = {(a1, a2, . . . , ah) ∈ {0, 1}h :∑h
i=1 ai = k} (i.e., Ak consists of h-tuples over {0, 1} having

exactly k ones.). For any 1 ≤ i ≤ M , consider a circuit with
h inputs realizing a Boolean function that takes exactly li,k
values 1 on each Ak (k = 0, 1, . . . , h). If we set all the input
probabilities to be r, then the output probability is

po =
h∑

k=0

li,krk(1− r)h−k =
h∑

k=1

aickrk(1− r)h−k

= aif(r) =
ai

b
.

Thus, we can transform r into any number in the set
{p1, . . . , pM} through combinational logic.

Theorems 2 and 3 lead to the following corollary.

Corollary 1
Given an integer n ≥ 2, there exists a real number 0 < r < 1
which can be transformed into any base-n fractional probability
m
nd (d and m are integers with d ≥ 1 and 0 ≤ m ≤ nd) through
combinational logic. �

Proof: Based on Theorem 3, there exists a real number
0 < r < 1 which can be transformed into any probability
in the set { 1

n , 2
n , . . . , n−1

n }. Further, based on Theorem 2, the
statement in the corollary holds.

IV. SCENARIO TWO: SET S IS SPECIFIED AND THE
ELEMENTS CANNOT BE DUPLICATED.

The problem considered in this scenario is: given a set S =
{p1, p2, . . . , pn} and a target probability q, construct a circuit
that, given inputs with probabilities from S, produces an output
with probability q. Each element of S can be used as an input
probability no more than once.

A. An Optimal Solution
In this section, we show an optimal solution to the problem

based on linear 0-1 programming. With the assumption that
the probabilities cannot be duplicated, we are building a circuit
with n inputs, the i-th input of which has probability pi. (If a
probability is not used, then the corresponding input is just a
dummy.)

Our method is based on a truth table for n variables. Each
row of the truth table is annotated with the probability that
the corresponding input combination occurs. Assume that the
n variables are x1, x2, . . . , xn and xi has probability pi. Then,
the probability that the input combination x1 = a1, x2 =
a2, . . . , xn = an (ai ∈ {0, 1}, for i = 1, . . . , n) occurs is

P (x1 = a1, x2 = a2, . . . , xn = an) =
n∏

i=1

P (xi = ai).

A truth table for a two-input XOR gate is shown in Table II.
The fourth column is the probability that each input combina-
tion occurs. Here P (x = 1) = px and P (y = 1) = py .

TABLE II: A truth table for a two-input XOR gate.

x y z Probability
0 0 0 (1− px)(1− py)
0 1 1 (1− px)py

1 0 1 px(1− py)
1 1 0 pxpy

The output probability is the sum of the probabilities of
input combinations that produce an output of one. Assume that
the probability of the i-th input combination, corresponding to
minterm mi, is ri (0 ≤ i ≤ 2n − 1) and that the output of
the circuit corresponding to the i-th input combination is zi

(zi ∈ {0, 1}, 0 ≤ i ≤ 2n − 1). Then, the output probability is

po =
2n−1∑
i=0

ziri. (5)

For the example in Table II, the output probability is

po = r1 + r2 = (1− px)py + px(1− py).

Thus, constructing a circuit with output probability q is
equivalent to determining the zi’s such that Equation (5)
evaluates to q. In the general case, depending on the values
of pi and q, it is possible that q cannot be exactly realized
by any circuit. The problem then is to determine the zi’s
such that the difference between the value of Equation (5)
and q is minimized. We can formulate this as the following
optimization problem:

Find zi that minimizes
∣∣∣∑2n−1

i=0 ziri − q
∣∣∣ (6)

such that zi ∈ {0, 1} for i = 0, 1, . . . , 2n − 1. (7)
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The solution this optimization problem can be derived by first
separating it into two subproblems:

Problem 1
Find zi that minimizes obj1 =

∑2n−1
i=0 rizi − q, such that∑2n−1

i=0 rizi − q ≥ 0 and zi ∈ {0, 1} for i = 0, 1, . . . , 2n − 1.

Problem 2
Find zi that minimizes obj2 = q −

∑2n−1
i=0 rizi such that q −∑2n−1

i=0 rizi ≥ 0 and zi ∈ {0, 1} for i = 0, 1, . . . , 2n − 1.

Problems 1 and 2 are linear 0-1 programming problems
that can be solved using standard techniques. Suppose that
the minimum solution to Problem 1 is (z∗0 , z∗1 , . . . , z∗2n−1)
with obj1 = obj∗1 and the minimum solution to Problem 2
is (z∗∗0 , z∗∗1 , . . . , z∗∗2n−1) with obj2 = obj∗2. Then the solution
to the original problem is the set of zi’s corresponding to
min{obj∗1, obj∗2}.

If the solution to the above optimization problem has zi = 1,
then the Boolean function should contain the minterm mi;
otherwise, it should not. A circuit implementing the solution
can be readily synthesized.6

B. A Suboptimal Solution
The above solution is simple and optimal; it works well

when n is small. However, when n is large, there are two
difficulties with the implementation that might make it imprac-
tical. First, the solution is based on linear 0-1 programming,
which is NP -hard. Therefore, the computational complexity
will become significant. Secondly, if an application-specific
integrated circuit (ASIC) is designed to implement the solution
of the optimization problem, the circuit may need as many as
O(2n) gates in the worst case. This may be too costly for
large n.

In this section, we provide a greedy algorithm that yields
suboptimal results. However, the difference between the output
probability of the circuit that it synthesizes and the target
probability q is bounded. The algorithm has good performance
both in terms of its run-time and the size of the resulting
circuit.

The idea of the greedy algorithm is that we construct a
group of n+1 circuits C1, C2, . . . , Cn+1 such that the circuit
Ck (1 ≤ k ≤ n) has k probabilistic inputs and the circuit
Cn+1 has n probabilistic inputs and one deterministic input
of either zero or one. For all 1 ≤ k ≤ n, the circuit Ck+1

is constructed from Ck by replacing one input of Ck with a
two-input gate.

The construction of the circuit C1 is straightforward. It is
achieved by either connecting a single input directly to the
output or appending an inverter to a single input. As a result,
its output probability is in the set

S1 = {p1, . . . , pn, 1− p1, . . . , 1− pn}.

We can choose the number that is the closest to q in the set
S1 as its output probability and construct the circuit C1 based
on this probability. More specifically, suppose that p is the
probability that is the closest to q in the set S1. Then we have
the following two cases for p.

6In particular, a field-programmable gate array (FPGA) can be configured
for the task. For an FPGA with n-input lookup tables, the i-th configuration
bit of the table would be set to zi, for i = 0, 1, . . . , 2n − 1.

1) The case where p = pi1 for some 1 ≤ i1 ≤ n. We set the
Boolean function of the circuit C1 to f1(x1) = x1 and
set the input probability to P (x1 = 1) = pi1 .

2) The case where p = 1−pi1 for some 1 ≤ i1 ≤ n. We set
the Boolean function of the circuit C1 to f1(x1) = ¬x1

and set the input probability to P (x1 = 1) = pi1 .
In either of the two cases, in order for the circuit C1 to

realize the exact output probability q, there is an ideal value
that should replace the value pi1 : in the first case, the ideal
value is q and in the second case, it is 1 − q. We denote the
ideal value that replaces pi1 as p∗i1 .

Now, we assume that the Boolean function of the circuit Ck

is fk(x1, x2, . . . , xk) and the input probabilities are P (x1 =
1) = pi1 , P (x2 = 1) = pi2 , . . . , P (xk = 1) = pik

. Let p∗ik

be an ideal value such that if we replace pik
by p∗ik

and keep
the remaining input probabilities unchanged then the output
probability of Ck is exactly equal to q.

Our idea for constructing the circuit Ck+1 is to replace the
input xk of the circuit Ck with a single gate with inputs xk

and xk+1. Thus, the Boolean function of the circuit Ck+1 is

fk+1(x1, . . . , xk+1) = fk(x1, . . . , xk−1, gk+1(xk, xk+1)),

where gk+1(xk, xk+1) is a Boolean function on two variables.
We keep the probabilities of the inputs x1, x2, . . . , xk the same
as those of the circuit Ck. We choose the probability of the
input xk+1 from the remaining choices of the set S such that
the output probability of the newly added single gate is closest
to p∗ik

. Assume that the probability of the input xk+1 is pik+1 .
In order to construct the circuit Ck+2 in the same way, we also
calculate an ideal probability p∗ik+1

such that if we replace
pik+1 by p∗ik+1

and keep the remaining input probabilities
unchanged then the output probability of the circuit Ck+1 is
exactly equal to q.

To make things easy, we only consider AND gates and OR
gates choices for the new added gate. The choice depends on
whether p∗ik

> pik
. When p∗ik

> pik
, we choose an OR gate

to replace the input xk of the circuit Ck. The first input of
the OR gate connects to xk and the second to xk+1 or to the
negation of xk+1. The probability of the input xk is kept as
pik

. The probability of the input xk+1 is chosen from the set
S\{pi1 , . . . , pik

}. Thus, the first input probability of the OR
gate is pik

and the second is chosen from the set

Sk+1 = {p|p = pj or 1− pj , pj ∈ S\{pi1 , . . . , pik
}}.

For an OR gate with two input probabilities a and b, its output
probability is

a + b− ab = a + (1− a)b.

The second input probability of the OR gate is chosen as p in
the set Sk+1 such that the output probability of the OR gate
pik

+ (1− pik
)p is closest to p∗ik

. Equivalently, p is the value
in the set Sk+1 that is closest to the value

p∗ik
− pik

1− pik

.

We have two cases for p.
1) The case where p = pik+1 , for some pik+1 ∈

S\{pi1 , . . . , pik
}. We set the second input of the OR

gate to be xk+1 and set its probability as P (xk+1 =
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1) = pik+1 . The ideal value p∗ik+1
should set the output

probability of the OR gate to be p∗ik
, so it satisfies that

pik
+ (1− pik

)p∗ik+1
= p∗ik

, (8)

or

p∗ik+1
=

p∗ik
− pik

1− pik

.

2) The case where p = 1 − pik+1 , for some pik+1 ∈
S\{pi1 , . . . , pik

}. We set the second input of the OR
gate to be ¬xk+1 and set its probability as P (xk+1 =
1) = pik+1 . The ideal value p∗ik+1

should set the output
probability of the OR gate to be p∗ik

, so it satisfies that

pik
+ (1− pik

)(1− p∗ik+1
) = p∗ik

, (9)

or

p∗ik+1
=

1− p∗ik

1− pik

.

When p∗ik
≤ pik

, we choose an AND gate to replace
the input xk of the circuit Ck. The first input of the AND
gate connects to xk and the second connects to xk+1 or the
negation of xk+1. The probability of the input xk is kept as
pik

. The probability of the input xk+1 is chosen from the set
S\{pi1 , . . . , pik

}. Similar to the case where p∗ik
> pik

, the
second input probability of the AND gate is chosen as a value
p in the set Sk+1 such that the value p · pik

is the closest to
p∗ik

. Equivalently, p is the value in the set Sk+1 that is the
closest to the value

p∗ik

pik

.

We have two cases for p.
1) The case where p = pik+1 , for some pik+1 ∈

S\{pi1 , . . . , pik
}. We set the second input of the AND

gate to be xk+1 and set its probability as P (xk+1 = 1) =
pik+1 . The ideal value p∗ik+1

satisfies

pik
· p∗ik+1

= p∗ik
, (10)

or

p∗ik+1
=

p∗ik

pik

.

2) The case where p = 1 − pik+1 , for some pik+1 ∈
S\{pi1 , . . . , pik

}. We set the second input of the AND
gate to be ¬xk+1 and set its probability as P (xk+1 =
1) = pik+1 . The ideal value p∗ik+1

satisfies

pik
(1− p∗ik+1

) = p∗ik
, (11)

or

p∗ik+1
= 1−

p∗ik

pik

.

Iteratively, using the procedure above, we can construct
circuits C1, C2, . . . , Cn. Finally, we construct a circuit Cn+1,
which is built from Cn by replacing its input xn with an OR
gate or an AND gate with two inputs xn and xn+1. We keep
the probabilities of the inputs x1, . . . , xn the same as those of
the circuit Cn. The input xn+1 is set to a deterministic value
of zero or one. Thus, the probability of the input xn+1 is either
zero or or one. The choice of either an OR gate or an AND
gate depends on whether p∗in

> pin
. When p∗in

> pin
, we

choose an OR gate. The ideal probability value for the input
xn+1 is

p∗in+1
=

p∗in
− pin

1− pin

. (12)

When p∗in
≤ pin , we choose an AND gate. The ideal

probability value for the input xn+1 is

p∗in+1
=

p∗in

pin

. (13)

The choice of setting the input xn+1 to a deterministic value
of zero or one depends on which one is closer to the value
p∗in+1

: If |p∗in+1
| < |1− p∗in+1

|, then we set the input xn+1 to
zero; otherwise, we set it to one.

There is no evidence to show that the difference between
the output probability of the circuit and q decreases as the
number of inputs increases. Thus, we choose the one with
the smallest difference among the circuits C1, . . . , Cn+1 as
the final construction. It is easy to see that this algorithm
completes in O(n2) time. For all 1 ≤ k ≤ n + 1, the circuit
Ck has k−1 fanin-two gates. Thus, the final solution contains
at most n fanin-two logic gates.

The following theorem shows that the difference between
the target probability q and the output probability of the circuit
synthesized by our greedy algorithm is bounded.

Theorem 4
In Scenario Two, given a set S = {p1, p2, . . . , pn} and a
target probability q, let p be the output probability of the circuit
constructed by the greedy algorithm. We have

|p− q| ≤ 1
2

n∏
k=1

max{pk, 1− pk}. �

Proof: See Appendix A.

V. SCENARIO THREE: SET S IS NOT SPECIFIED AND THE
ELEMENTS CANNOT BE DUPLICATED

In Scenario Two, when solving the optimization problem,
the minimal difference

∣∣∣∑2n−1
i=0 ziri − q

∣∣∣ is actually a function
of q, which we denote as h(q). That is,

h(q) = min
∀i,zi∈{0,1}

∣∣∣∣∣
2n−1∑
i=0

ziri − q

∣∣∣∣∣ . (14)

Assume that q is uniformly distributed on the unit interval.
The mean of h(q) for q ∈ [0, 1] is solely determined by the
set S. We can see that the smaller the mean is, the better the
set S is for generating arbitrary probabilities. Thus, the mean
of h(q) is a good measure for the quality of S. We will denote
it as H(S). That is,

H(S) =
∫ 1

0

h(q) dq. (15)

The problem considered in this scenario is: given an integer
n, choose the n elements of the set S so that they produce a
minimal H(S).

Note that the only difference between Scenario Two and
Scenario Three is that in Scenario Three, we are able to choose
the elements of S. When constructing circuits, each element
of S is still constrained to be used no more than once. As
in Scenario Two, we are constructing a circuit with n inputs
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to realize each target probability. A circuit with n inputs has
a truth table of 2n rows. There are a total of 22n

different
truth tables for n inputs. For a given assignment of input
probabilities, we can get 22n

output probabilities.

Example 4
Consider the truth table shown in Table III. Here, we assume
that P (x = 1) = 4/5 and P (y = 1) = 2/3. The cor-
responding probability of each input combination is given in
the fourth column. For different assignments (z0z1z2z3) of the
output column, we obtain different output probabilities. For
example, if (z0z1z2z3) = (1010), then the output probability
is 5/15; if (z0z1z2z3) = (1011), then the output probability is
13/15. There are 16 different assignments for (z0z1z2z3), so
we can get 16 output probabilities. In this example, they are
0, 1/15, . . . , 14/15 and 1. �

TABLE III: A truth table for two variables. The output column
(z0z1z2z3) has a total of 16 different assignments.

x y z Probability
0 0 z0 1/15
0 1 z1 2/15
1 0 z2 4/15
1 1 z3 8/15

Let N = 22n

. For a set S with n elements, call the N
possible probability values b1, b2, . . . , bN and assume that they
are arranged in increasing order. That is b1 ≤ b2 ≤ · · · ≤ bN .
Note that if the output column of the truth table consists of all
zeros, the output probability is 0. If it consists of all ones, the
output probability is 1. Thus, we have b1 = 0 and bN = 1.

The first question is: what is a lower bound for H(S)? We
have the following theorem.

Theorem 5
A lower bound for H(S) is

1
4(N − 1)

. �

Proof: Note that for a q satisfying bi ≤ q ≤ bi + bi+1

2
,

h(q) = q − bi; for a q satisfying
bi + bi+1

2
< q ≤ bi+1,

h(q) = bi+1 − q. Thus,

H(S) =
∫ 1

0

h(q) dq

=
N−1∑
i=1

∫ bi+bi+1
2

bi

(q − bi) dq +
∫ bi+1

bi+bi+1
2

(bi+1 − q) dq


=

1
4

N−1∑
i=1

(bi+1 − bi)2.

(16)

Let ci = bi+1− bi, for i = 1, . . . , N −1. Since
∑N−1

i=1 ci =
bN − b1 = 1, by the Cauchy-Schwarz inequality, we have

H(S) =
1
4

N−1∑
i=1

c2
i ≥

1
4(N − 1)

(
N−1∑
i=1

ci

)2

=
1

4(N − 1)
.

The second question is: can this lower bound for H(S) be
achieved? We will show that the lower bound is achieved for
the set

S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n− 1}. (17)

Lemma 1
For a truth table on the inputs x1, . . . , xn arranged in the order
xn, . . . , x1, let

P (xk = 1) =
22k−1

22k−1 + 1
, for k = 1, . . . , n.

The probability of the i-th input combination (0 ≤ i ≤ 2n − 1)

is
2i

22n − 1
. �

Proof: See Appendix B.

Based on Lemma 1, we will show that the set S in
Equation (17) achieves the lower bound for H(S).

Theorem 6
The set S = {p|p =

22k

22k + 1
, k = 0, 1, . . . , n − 1} achieves

the lower bound
1

4(N − 1)
for H(S). �

Proof: By Lemma 1, for the given set S, the probability

of the i-th input combination (0 ≤ i ≤ 2n − 1) is
2i

22n − 1
.

Therefore, the set of N = 22n

possible probabilities is

R = {p|p =
2n−1∑
i=0

zi
2i

22n − 1
, zi ∈ {0, 1},∀i = 0, . . . , 2n−1}.

It is not hard to see that the N possible probabilities in
increasing order are

b0 = 0, b1 =
1

N − 1
, . . . , bi =

i

N − 1
, . . . , bN−1 = 1.

(Example 4 shows the situation for n = 2. We can see that with
the set S = {2/3, 4/5}, we can get 16 possible probabilities:
0, 1/15, . . . , 14/15 and 1.)

Thus, by Equation (16), we have H(S) =
1

4(N − 1)
.

To summarize, if we have the freedom to choose n real
numbers for the set S of source probabilities but each number
can be used only once, the best choice is

S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n− 1}.

With the optimal set S, the truth table for a target probability
q is easy to determine. First, round q to the closest fraction in

the form of
i

22n − 1
. Suppose the closest fraction is

g(q)
22n − 1

.
Then, the output of the i-th row of the truth table is set as
the i-th least significant digit of the binary representation of
g(q). Again, a circuit implementing this solution can be readily
synthesized.
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VI. CONCLUSIONS AND FUTURE WORK

In this work, we considered the problem of transforming
a set of input probabilities into a target probability with
combinational logic. The assumption that we make is that the
input probabilities are exact and independent. For example,
in synthesizing decimal output probabilities, we use multiple
independent copies of the exact input probabilities 0.4 and
0.5. Of course, if we use physical sources to generate the
input probabilities, there likely will be fluctuations. Also, the
probabilistic inputs will likely be correlated. A future direction
of research is how to design circuits that behave robustly in
spite of these realities.

In addition to the three scenarios that we presented, there
exists a fourth one that we have not considered: one in which
the source probabilities are specified and can be duplicated.
In this scenario, we would not expect to generate the target
probability exactly. Thus, the problem is how to synthesize
an area or delay optimal circuit whose output probability is a
close approximation to the target value. We will address this
problem in future work.
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APPENDIX A
Theorem 4
In Scenario Two, given a set S = {p1, p2, . . . , pn} and a
target probability q, let p be the output probability of the circuit
constructed by the greedy algorithm. We have

|p− q| ≤ 1
2

n∏
k=1

max{pk, 1− pk}. �

Proof: Let w be the output probability of the circuit Cn+1.
Since we choose the circuit that has the smallest difference
between its output probability and the output probability q
among the circuits C1, . . . , Cn+1 as the final construction, we
have |p− q| ≤ |w − q|. We only need to prove that

|w − q| ≤ 1
2

n∏
k=1

max{pk, 1− pk}.

Based on our algorithm, the circuit Cn+1 is a concatenation
of n logic gates, each being either an AND gate or an OR
gate. Denote the output probability of the i-th gate from the
beginning as wi.

Suppose that P (xn+1 = 1) = pin+1 ∈ {0, 1}. Based on our
choice of pin+1 , we have

|pin+1 − p∗in+1
| = min{|p∗in+1

|, |1− p∗in+1
|}.

Thus,

|pin+1 − p∗in+1
| ≤ 1

2
(|p∗in+1

|+ |1− p∗in+1
|).

Our greedy algorithm essures that 0 ≤ p∗in+1
≤ 1. Thus, we

further have
|pin+1 − p∗in+1

| ≤ 1
2
. (18)

Next, we will show by induction that for all 1 ≤ k ≤ n, we
have

|wk − p∗in+1−k
| ≤ 1

2

k∏
j=1

max{pin+1−j
, 1− pin+1−j

}. (19)

Base case: If the first gate is an OR gate, then we have

w1 = pin + (1− pin)pin+1 .

From Equation (12), we have

p∗in
= pin + (1− pin)p∗in+1

.

Thus,
|w1 − p∗in

| = (1− pin
)|pin+1 − p∗in+1

|.

Applying Equation (18), we have

|w1 − p∗in
| ≤ 1

2
(1− pin

) ≤ 1
2

max{pin
, 1− pin

}

=
1
2

1∏
j=1

max{pin+1−j
, 1− pin+1−j

}.
(20)

Similarly, if the first gate is an AND gate, we can also get
Equation (20). Thus, the statement holds for the base case.

Inductive step: Assume that the statement holds for some
1 ≤ k ≤ n− 1. Now consider k + 1. Based on our algorithm,
there are four cases:
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1) The (k + 1)-th gate from the beginning is an OR gate
with one input connected to the output of the k-th gate.

2) The (k + 1)-th gate from the beginning is an OR gate
with one input connected to the inverted output of the
k-th gate.

3) The (k + 1)-th gate from the beginning is an AND gate
with one input connected to the output of the k-th gate.

4) The (k + 1)-th gate from the beginning is an AND gate
with one input connected to the inverted output of the
k-th gate.

In the first case, we have

wk+1 = pin−k
+ (1− pin−k

)wk.

In this case, the relation between the ideal values p∗in+1−k
and

p∗in−k
is

p∗in−k
= pin−k

+ (1− pin−k
)p∗in+1−k

.

Thus,

|wk+1 − p∗in−k
| = (1− pin−k

)|wk − p∗in+1−k
|

≤ max{pin−k
, 1− pin−k

}|wk − p∗in+1−k
|. (21)

Based on the induction hypothesis, we have

|wk − p∗in+1−k
| ≤ 1

2

k∏
j=1

max{pin+1−j
, 1− pin+1−j

}. (22)

Combining Equations (21) and (22), we have

|wk+1 − p∗in−k
| ≤ 1

2

k+1∏
j=1

max{pin+1−j
, 1− pin+1−j

}. (23)

In the other three cases, we can similarly derive Equation (23).
Thus, the statement holds for k + 1. This completes the
induction proof.

Note that {pi1 , . . . , pin
} = {p1, . . . , pn}. Thus, when k =

n, Equation (19) can be written as

|wn − p∗i1 | ≤
1
2

n∏
j=1

max{pj , 1− pj}.

Based on our algorithm, the final output is either the direct
output of the n-th gate or the inverted output of the n-th gate.
In either case, we have

|w − q| = |wn − p∗i1 | ≤
1
2

n∏
j=1

max{pj , 1− pj}.

APPENDIX B

Lemma 1
For a truth table on the inputs x1, . . . , xn arranged in the order
xn, . . . , x1, let

P (xk = 1) =
22k−1

22k−1 + 1
, for k = 1, . . . , n.

The probability of the i-th input combination (0 ≤ i ≤ 2n − 1)

is
2i

22n − 1
. �

Proof: We prove the lemma by induction on n.

Base case: When n = 1, by assumption, P (x1 = 1) =
2
3

.
The 0-th input combination is x1 = 0 and has probability

1
3

=
20

22n − 1
.

The first input combination is x1 = 1 and has probability

2
3

=
21

22n − 1
.

Inductive step: Assume that the statement holds for (n− 1).
Denote the probability of the i-th input combination in the
truth table of n variables as pi,n. By the induction hypothesis,
for 0 ≤ i ≤ 2n−1 − 1,

pi,n−1 =
2i

22n−1 − 1
.

Consider the truth table of n variables. Note that the input
probabilities for x1, . . . , xn−1 are the same as those in the

case of (n− 1) and P (xn = 1) =
22n−1

22n−1 + 1
.

When 0 ≤ i ≤ 2n−1− 1, the i-th row of the truth table has
xn = 0; the assignment to the rest of the variables is the same
as the i-th row of the truth table of (n− 1) variables. Thus,

pi,n = P (xn = 0) · pi,n−1 =
1

22n−1 + 1
· 2i

22n−1 − 1

=
2i

22n − 1
.

(24)

When 2n−1 ≤ i ≤ 2n − 1, the i-th row of the truth table
has xn = 1; the assignment to the rest of the variables is the
same as the (i− 2n−1)-th row of the truth table of (n− 1)
variables. Thus,

pi,n = P (xn = 1) · pi−2n−1,n−1 =
22n−1

22n−1 + 1
· 2i−2n−1

22n−1 − 1

=
2i

22n − 1
.

(25)

Combining Equation (24) and (25), the statement holds for n.
Thus, the statement in the lemma holds for all n.


