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Abstract9

Prior research has introduced the Single-Instruction-Multiple-Data paradigm for DNA computing10

(SIMD DNA). It offers the potential for storing information and performing in-memory computations11

on DNA, with massive parallelism. This paper introduces three new SIMD DNA operations: sorting,12

shifting, and searching. Each is a fundamental operation in computer science. Our implementations13

demonstrate the effectiveness of parallel pairwise operations with this new paradigm.14
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1 Introduction23

Beginning with the seminal work of Adelman a quarter-century ago [1], DNA computing has24

promised the benefits of massive parallelism in operations. More recently, there has been25

considerable interest in DNA storage [3, 4]. A particularly promising approach is to encode26

data by “nicking” DNA with editing enzymes such as PfAgo and CRISPR-Cas9 [9, 12]. A27

novel paradigm that combines this form of data storage with computation, dubbed “SIMD28

DNA”, was introduced in 2019 [13]. Data is stored on potentially long DNA strands, divided29

into “cells”, each storing a single bit. Nicks and denaturing create open toeholds in each30

cell. Toehold-mediated strand displacement [10, 14] is used to implement computation on31

the stored values.32

This paper first proposes a new encoding system for SIMD DNA computation, suitable for33

general pairwise operations. Then it presents three novel applications using the new encoding34

system. The first is a binary bubble sorting algorithm (equivalent to rule 184 with elementary35

cellular automata [7, 8]). We show that sorting can be performed in only N parallel steps,36

where N is the number of bits to be sorted. The second application is a left-shifting operation37

(equivalent to rule 170 with elementary cellular automata), performed in a single parallel step.38

The third application is a parallel search algorithm that returns an answer as to whether a39

query substring is present in a target string. In principle, the algorithm can return an answer40

1 corresponding author

© Tonglin Chen, Arnav Solanki, and Marc Riedel;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Sulc; Article No. 11; pp. 11:1–11:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chen5202@umn.edu
http://mriedel.ece.umn.edu/wiki/index.php/Tonglin_Chen 
mailto:solan053@umn.edu
http://mriedel.ece.umn.edu/wiki/index.php/Arnav_Solanki
https://orcid.org/0000-0003-4039-2814
mailto:mriedel@umn.edu
http://mriedel.ece.umn.edu/wiki/index.php/Marc_Riedel
https://orcid.org/0000-0002-3318-346X
https://doi.org/10.4230/LIPIcs.DNA.27.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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in log(n) steps, but our implementation requires between log(n) and n steps to complete,41

depending on the problem size and implementation constraints, where n is the length of the42

query string. Note that the parallelism is still impressive, assuming that the query string43

length n is much smaller than the target string length m. All three applications are of44

immediate practical interest, as many forms of computation on stored data entail some form45

of sorting, shifting, and searching.46

2 Background47

2.1 Parallel computation using SIMD48

SIMD is a computer engineering acronym for Single Instruction, Multiple Data [6], a form of49

computation in which multiple processing elements perform the same operation on multiple50

data points simultaneously. It contrasts with the more general class of parallel computation51

called MIMD (Multiple Instructions, Multiple Data), where multiple processing elements52

can perform completely different operations on multiple data points simultaneously. While53

general MIMD parallelism might be desirable, it is often not practical. Much of the modern54

progress in electronic computing power has come by scaling up SIMD computation with55

platforms such as graphical processing units (GPUs).56

2.2 SIMD DNA structure57

SIMD implemented on DNA is intriguing. It provides a means to transform stored data,58

perhaps large amounts of it, with a single parallel instruction. We will review the paradigm59

as we introduce our new encoding scheme and our new applications; of course, we do not60

claim credit for the original concepts. The reader is referred to [13].61

SIMD DNA computation is predicated on the encoding scheme for data. Conceptually, we62

divide stretches of double-stranded DNA into “domains”, where each domain is a contiguous63

sequence of nucleotides of some small specified length (typically 5 to 20). A sequence of64

several (typically 5 to 7) domains maps to a “cell” storing one binary bit. Whether a cell65

stores a 0 or a 1 depends upon topological variations, specifically the location of nicks, i.e.,66

breaks in the DNA backbone. The nicks always occur on one strand of a double-stranded67

complex (generally the top strand in our examples); the other remains untouched.68

The computation is carried out by a sequence of “instructions”, where each instruction69

implements DNA strand displacement reactions on cells. Instructions are initiated by single-70

stranded “instruction strands” added to the solution. After the strand displacement cascades71

complete, any single-strand fragments in the solution are washed away; the original strand72

is kept and separated via a magnetic bead. After a sequence of instructions, the data is73

transformed to its final state. The readout can be performed via fluorescence or with Oxford74

nanopore devices [2], [9].75

The general flow of SIMD DNA computation is summarized as follows and illustrated in76

Figure 1.77

1. Design an encoding structure that best suits the algorithm.78

2. Encode the data at specific locations, using enzymes to nick corresponding targets.79

3. Gently denature the DNA, allowing segments between adjacent nicks to detach, exposing80

toeholds.81

4. Execute instructions, implemented as strand-displacement operations.82

5. Finally, read out data using fluorescence or with nanopores.83



T. Chen, A. Solanki, and M. Riedel 11:3

1. Design
Encoding
Scheme

2. Encode
Data

3. Perform
Computation

4. Read out

Nanopores

1     2      3     4     5      6     7

Toehold ToeholdNick Nick

Bit 0 Bit 1

1     2      3     4     5      6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7
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Figure 1 General Outline of SIMD DNA Computations. Arrowheads represent “nicks”: breaks
in the DNA backbone, performed with gene editing techniques. Integers represent “domains”:
contiguous sequences of nucleotides of some small, specified length. For convenience, we use the
numbers 1 through 7 repeatedly; however, each copy of a number represents a distinct domain,
consisting of a unique nucleotide sequence. Stage 1 shows the encoding of binary bits 0 and 1, based
of different locations of toeholds and nicks. Note that domain 1 is always “exposed”: the DNA
backbone of the top strand is nicked, and the DNA is gently denatured until this segment falls
off, exposing a toehold at this domain. Stage 2 shows an example of encoding the bits 010. Stage
3 illustrates the step in which computation is performed with strand displacement, in a general
sense. Details of this step will be provided for specific algorithms in later sections. Note that, in
this generic example, the location of nick in the second cell has changed at the end of stage 3. Stage
4 illustrates how nanopore sequencing could be used to perform readout.

3 Design of Encoding System84

Several schemes for encoding binary data were proposed in prior work [13], each chosen to85

minimize the number of operations for a specific algorithm. Here we propose a new encoding86

scheme that works well for the broad class of algorithms that consist of parallel, pairwise87

operations. A requirement for running these algorithms is that the encoding scheme should88

allow the algorithm to recognize any combination of adjacent bits. This specification comes89

at the expense of more complexity for some algorithms, i.e., more operations per step than90

possible with a customized encoding.91

The encoding scheme is shown in Figure 2. Each cell stores a single binary value (a “bit”).92

Each cell consists of 7 domains. We do not specify the actual nucleotide sequence of the93

domains here for simplicity. While preparing this cell, the top DNA strand must be nicked94

before and after domain 1. This strand can then be displaced by denaturing, creating an95

exposed toehold. Domain 1 is always exposed as a toehold in this representation. Domains 296

through 7 are covered. When storing a bit 0, we will nick the top strand between domains 397

and 4; when storing a bit 1, we will nick between domains 5 and 6. There are four possible98

DNA 27
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1     2      3     4     5      6     7

Toehold ToeholdNick Nick

Bit 0 Bit 1

1     2      3     4     5      6     7

Figure 2 Bit representation in the encoding scheme. Horizontal lines represents DNA strands.
Integers represent “domains”: specific sequences of nucleotides. Arrow heads represent nicked
positions: places where the phosphodiester bond in the backbone of the DNA strand has been
broken, via gene-editing techniques. Cells store binary values. Each cell consist of 7 domains.
Domain 1 is always exposed, forming a toehold.

pairings for two adjacent cells. Each will be detected using different domain combinations:99

for (0, 0), domains 1, 2 and 3; for (0, 1), domain 1 only; for (1, 0), domains 6 through 3 with100

wrapping at domain 7 and 1; and for (1, 1), domains 6, 7 and 1.101

Before describing the implementation of specific algorithms for sorting, shifting, and102

searching, we will present some general algorithmic steps useful in implementing all of these.103

3.1 Identifying Bit Pairs104

A common task in our algorithms is “identifying” pairs of adjacent bits, i.e., recognizing the105

specific pair of cells at a location of interest. We will exploit the fact that domain 1 is always106

exposed to identify these specific pairs. Figure 3 illustrates our approach on the string 11001,107

which contains all 4 possible adjacent pairs: 00, 01, 10 and 11.108

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1    6    7    1    2    3 S1    6    7    1    2    3 S1    6    7    1    2    3 S1    6    7    1    2    3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1 S1 S1

6*   7*   1*   2*   3* 6*   7*   1*   2*   3* 6*   7*   1*   2*   3* 6*   7*   1*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1
S2    6    7    1

S3    1    2    3

S2    6    7    1

S3    1    2    3

S2    6    7    1

S3    1    2    3

S2    6    7    1

S3    1    2    3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1 S3S2

Original: 11001

Ins 1: Identifying pair (1, 0)

Ins 2: Detaching S1 on all other pairs

Ins 3: Identifying pair (0, 0) and (1, 1)

Result

Figure 3 Example of Identifying Different Pairs of Adjacent Bits.

Identification is performed with three instructions. In instruction 1, the strands (S1 6 7109

1 2 3) are issued to all pairs of bits. Through the toehold at domain 1 between each pair,110

the strand S1 binds to domains 6, 7, 1 in the pair (1, 1), leaving domains S1, 2, 3 open. In111
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the pair (0, 0), the strand S1 binds to domains 1, 2, 3, leaving domains S1, 6, 7 open. The112

strand S1 binds to domains 6, 7, 1, 2, 3, in the pair (1, 0). The strand S1 does not bind to113

the pair (0, 1) since the only exposed toehold is domain 1. We can then distinguish the pair114

(1, 0) from the open domains on strand S1.115

In instruction 2, using the complementary strands (6* 7* 1* 2* 3*), the strand S1 that116

attaches to the pairs (0, 0) and (1, 1) is pulled out. This is done through the open domains117

2, 3 in the pair (0, 0) and the open domains 6, 7 in the pair (1, 1) on strand S1. After this118

instruction, strand S1 remains only in the pair (1, 0).119

In instruction 3, two instruction strands are issued at the same time: (S2 6 7 1) and (S3120

1 2 3). Here (S2 6 7 1) will bind to the pair (1, 1) and (S3 1 2 3) will bind to the pair (0, 0).121

They will not bind with any other pairs since the only exposed toehold for binding would be122

domain 1; they will prefer the locations with more exposed domains.123

The result is that the adjacent bit pairs (1, 1), (1, 0) and (0, 0) are each labeled with124

strands S2, S1 and S3 respectively. Pairs (0, 1) are labelled with an exposed toehold at125

domain 1. This toehold could be replaced by a strand (Sx 4 5 6 7 1) or a strand (Sx 1 2 3 4126

5); the choice would be made depending on the use case.127

3.2 Rewriting a cell128

S     2     3     4     5     6     7 S*   2*   3*   4*   5*   6*   7*

1     2     3     4     5     6     7

S     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Figure 4 Example of Rewriting in Three Steps

By exposing toeholds across domains 2 through 7 in a cell, we can rewrite the content of that129

cell – so change a 1 to 0 or a 0 to 1 – with three instructions. The idea is that, since there130

are exposed domains, we can displace the content of the cell with a single strand covering all131

these domains. Then we can remove the covering strand through the exposed “tag” domain132

(S in Figure 4) using a complementary strand. The cell is now completely exposed. We can133

write a new bit to it by hybridizing the strands according to our encoding scheme, leaving134

domain 1 as a toehold and placing the nick at the desired location.135

4 Parallel Binary Bubble Sorting136

Sorting is a simple yet fundamental operation in computer science. Here we consider sorting137

binary values.2 Sorting can be used to determine the “weight” of a vector of 0’s and 1’s:138

the count of the number of 1’s relative to the length of the vector. It can also be used to139

compute the majority function: whether there are more 1’s than 0’s or not in the input set.140

Majority is a fundamental operation for many machine-learning algorithms.141

Our SIMD DNA implementation performs parallel bubble sorting on binary bits [5]. It142

can be expressed as a pairwise operation in the form of f(a, b) = (c, d), where (a, b) is the143

value of the input bit pair, and (c, d), the outputs, represent the action we take, whether to144

rewrite or to leave it as it is. The outputs can be 0 or 1, which means that we can arbitrarily145

2 Perhaps counter-intuitively, sorting binary values in hardware is as difficult algorithmically as sorting
arbitrary values such as integers or real numbers [5]

DNA 27
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change the value of the cell. They can also be X, meaning they remain unchanged. We146

discuss what kind of pairwise operations can be performed on our encoding in Section 7.1.147

The sorting operation can be expressed in the following pairwise operation,148

f(0, 0) = (X, 0) f(0, 1) = (X, X) f(1, 0) = (0, 1) f(1, 1) = (1, X).149

Algorithmically, the following “bit swapping” is performed:150

If the current bit is 1, it changes it to 0 if and only if its right neighbor is 0.151

If the current bit is 0, it changes it to 1 if and only if its left neighbor is 1.152

We argue that repeatedly performing such bit swapping will sort the entire sequence of binary153

values.154

▷ Claim 1. Bit swapping will never happen more than once for any consecutive sequence of155

three bits. Such a sequence consists of two consecutive pairs, sharing the middle bit.156

Proof. The only pair of consecutive bits that ever gets rewritten is the pair (1, 0) to (0, 1). It157

is impossible to have two consecutive, overlapping pairs (1, 0) sharing a common middle bit.158

◁159

Accordingly, bubble sorting binary values in parallel does not require an odd and even index160

addressing scheme, as does bubble sorting arbitrary values.161

▷ Claim 2. Sorting completes in at most (N − 1) parallel steps where N is the total number162

of bits.163

Proof. Suppose we have a sequence of binary bits of length N , in which all bits except the164

first are 0. When applying the algorithm, the 1 located at the start will be pushed back one165

position at a time with the f(1, 0) = (0, 1) bit swap operation. Fully sorting the sequence,166

i.e., moving the 1 to the last position, requires N − 1 total swaps. Now suppose we are167

sorting an arbitrary bit sequence. We argue that, after N − 1 swaps, all the 1’s will be at the168

end of the sequence. To see why, note that an f(1, 0) = (0, 1) operations moves a 1 forward,169

while an f(1, 1) = (1, 1) operation does not affect adjacent 1’s. Thus, in N − 1 steps, all 1’s170

will have moved to end of the sequence. ◁171

4.1 Implementation172

Here we give an instruction set for performing parallel binary bubble sort with SIMD DNA,173

using the encoding in Figure 2. It consists of 12 individual instructions. These are summarized174

as follows.175

1. Label pairs (1, 0).176

2. Uncover these, leaving domains 6 and 7 for the bits 1 and domains 2 and 3 for the bits 0177

open in these pairs.178

3. Protect the bits 0 of these pairs by covering the corresponding toehold at domains 2 and179

3.180

4. Flip the bits 1 to 0 in these pairs.181

5. Release the protective covers; flip the bits 0 to 1 in these pairs.182

For the initialization, we can use the first two instructions described in Section 3.1, with183

an additional instruction to fix open domains for bits that do not change. We can use184

the rewriting method described in Section 3.2 to flip the bits. A full description of the185

implementation of sorting is provided in Appendix B.186
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1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

(a) Initial Sequence 0110

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1

(b) After Recognizing (1, 0)

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2 

(c) Protection on Bit 0

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

(d) Flipped third bit to 0, Protection Removed

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

(e) Flipped fourth bit to 1, Result 0101

Figure 5 Outline of the SIMD DNA parallel binary sorting algorithm.

5 Parallel Left Shifting187

We propose a SIMD DNA implementation of shifting, another fundamental operation in188

computer science. Shifting left corresponds to multiplying a binary number by 2; shifting189

right corresponds to dividing it by 2. It is a useful operation in general for aligning data in a190

variety of algorithms [5]. We present a left shift algorithm, one that shifts all N binary bits191

one position to the left, with the Least Significant Bit (LSB) remaining unchanged. This192

operation is, of course, a parallel left shift, moving all bits simultaneously in lockstep. Our193

implementation requires 11 instructions per shift. Note that unlike usual arithmetic or logical194

left shift that inserts a bit 0 to the LSB, the left shift operation described here keeps the195

original LSB, thereby duplicating the LSB. The usual left shift could be implemented by196

adding instructions rewriting the LSB to 0 after the instructions we provide here.197

We describe the shift operation using the following pairwise operation as:198

f(0, 0) = (0, X) f(0, 1) = (1, X) f(1, 0) = (0, X) f(1, 1) = (1, X)199

Here X means a value that does not change. For each bit pair, the operation writes the200

value of the right bit to the left bit. Since only the value of the left bit is changed in each bit201

pair, the operation is non-overlapping and can be implemented using the encoding scheme202

we propose. We illustrate with the example of shifting 11001 to 10011, shown in Figure 6.203

1. Label all the bit pairs. Cover the toeholds for the pairs (0, 0) and (1, 1).204

2. For the pairs (1, 0), flip the bits 1 to 0.205

3. For the pairs (0, 1), flip the bits 0 to 1.206

4. Finally, uncover all the toeholds for the pairs (0, 0) and (1, 1).207

A full description of the implementation of shifting is given in Appendix C.208

DNA 27
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1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

(a) Initial Sequence 11001

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1 S3S2 S4

(b) After identifying all pairs

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4S5

(c) Release S1 from Pair (1, 0)

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4

(d) Rewrite bit 1 in the previous pair with 0

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

(e) Release S2, S3 and S4 then write 1, Result 10011

Figure 6 Outline of the SIMD DNA parallel left shift operations. The initial sequence S is 11001
and the result sequence T is 10011. The operation shift each bit to left one position (T[5:1]=S[4:0]),
while keeping the Least Significant Bit unchanged.

6 Parallel Search Algorithm209

Searching is fundamental to all branches of computer science that involve data storage and210

retrieval. We consider the problem of deciding whether a given substring exists in a stored211

string of bits. We first discuss a general algorithm that returns an answer to such a question212

in log(n) parallel steps, where n is the substring length. We then propose an implementation213

in SIMD DNA. Due to practical constraints, the time complexity of the implementation214

is not O(log(n)); it is closer to O(n), depending on the problem size and implementation215

details. We note that a requirement of our algorithm is that the length of the query string is216

a power of 2. We discuss the time complexity and constraints in detail in Section 7.3.217

6.1 Algorithm218

Suppose we have a query substring Q of a length n and we would like to search whether it219

appears in a much longer target string A. Pseudo-code for our approach is given as Listing 1.220

We will elucidate the pseudo-code by stepping through examples.221

6.1.1 Parallel search procedure222

We illustrate searching for a query string Q = 1101 in the following target string A:223

A0 = 10101010110110100011110101000100
A1 = a2a2a2a2a3a1a2a2a0a3a3a1a1a0a1a0

A2 = b0b0b1b0b2b1b3b3 (1)224



T. Chen, A. Solanki, and M. Riedel 11:9

Listing 1 Pseudo-code for Parallel Search Algorithm. Note that the operations inside the two
foreach loops can be performed in parallel since they are independent. The pair operation here is
to find a corresponding symbol that replaces the two symbols in the lookup table, and the identity
operation is to look up the symbol that represents the query string.
S = Query String
T = Target String
n = length of S
for i in range (0,n -1):

T_i = T
truncate first i characters of T_i
p = 1
while p <= n:

j = 0
while j < ( length (T_i ) -1):

a = T_i[j]
b = T_i[j+1]
c = pair(a,b) # Pair 2 consecutive cells
if c. identity (S): # Check if new pair is the query

return True
replace a,b in T_i with c
j += 1

p = 2*p
return False

The original string is A0. In each step, two consecutive symbols are read and replaced with a225

single symbol. Here a0 = 00, a1 = 01, a2 = 10, a3 = 11, b0 = a2a2, b1 = a3a1, b2 = a0a3, b3 =226

a1a0. Note that Q = 1101 = a3a1 = b1. After three steps, we conclude that the query string227

exists in the target string, since there are two matches in the string A2.228

6.1.2 Search procedure with offset229

It is possible that the query string does not align with divisions of length n in the target230

string. Thus we need to repeat the operation with offsets. The following example illustrates231

the operation with an offset of 2 bits.232

A0 = 10101011010110000011110001000100
A1 = 10a2a2a3a1a1a2a0a0a3a3a0a1a0a1a0

A2 = 10b0b1b2b3b4b5b5a0 (2)233

Here, the replacement is given by the aggregated pairs a0 = 00, a1 = 01, a2 = 10, a3 =234

11, b0 = a2a2, b1 = a3a1, b2 = a1a2, b3 = a0a0, b4 = a3a3, b5 = a0a1. Again, an instance of235

the query string is found in the target string.236

Searching for a query string with a given offset requires at most log(n) steps. In general,237

for an arbitrary query string of a length n (a power of 2), the search must be performed238

n times with offsets ranging from 0 to n − 1. In principle, all of these searches could be239

performed in parallel, as none would interfere with any other. Accordingly, our parallel240

implementation of searching completes in log(n) steps.241

Note that the number of aggregated pair identifiers needed – the a’s and b’s in the242

example above – grows exponentially with the length of the target string. However, these243

can be synthesized once and reused for every query. If we consider the restricted problem of244
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searching for a specific query string, meaning that we only use pair identifiers for matching245

pairs, then the number of identifiers needed is
∑log(n)

i=1 2i = n − 1.246

6.2 Implementation247

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

(a) Initial Sequence 1011

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3A2

(b) Identifier A2 captures first pair 10, A3 captures second pair 11

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3A2'

(c) covering the domain 1 between the two bit pairs

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3'A2'

(d) Rewrite the content in the pair so that new identifiers are close to the middle

B11

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

(e) Two identifier strands replaced by a single identifier if there is a perfect match

B11

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A0

(f) Initial sequence is 0011. It will result in an open domain 4 in the cell left to the identifier

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

B11 A1

(g) Initial sequence is 1010. It will result in an open domain 4 on the identifier itself

Figure 7 Example implementation of search algorithm on target sequence 1011

To implement the algorithm in SIMD DNA, we do not issue instruction strands to each248

pair of overlapping bits. Instead, we consider the non-overlapping bit pairs. In the example249

shown in Figure 7, for the bit sequence 1011, we would consider operations on bit pair 10250

and 11, but not on bit pair 01.251

Figure 7 shows the critical steps on searching a target sequence 1011. It provides an252

example of a successful search and also the potential outcome of two failed searches. To253

implement the search operation with an offset, we can simply skip the number of bits254

according to the offset. We use the word symbol to represent the consecutive cells that we255
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search for on a certain level. For example, in the first level, the symbols are 10 and 11. We256

can use the bit identifying steps described in Section 3.1 to recognize these symbols. We use257

identifiers A0 = 00, A1 = 01, A2 = 10, A3 = 11 to represent symbols in this level. We then258

move on to the next level, searching for consecutive symbols A2A3, which corresponds to the259

target string 1011.260

In the first step of the second level, we first rewrite the topological structure at symbols261

that appear to be a query result. In this example, A2 should be found as the left symbol, and262

A3 should be found as the second symbol. We pull identifier A2 out from every odd symbol263

(we only look at the first, third, fifth, etc.) and rewrite the entire symbol with the technique264

described in Section 3.2. After rewriting, we have the identifier A′
2 that covers domains (5 6265

7) in the right most cell, as seen in Figure 7c. For the second symbol A3, we repeat the step266

described, except we pull the identifier out from every even symbol and the new identifier A′
3267

covers domains (2 3 4) in the left most cell. Through these steps, we have essentially “moved”268

the identifier of the matching symbols to the middle. In the final step, we issue the new269

identifier strand (B11 5 6 7 1 2 3 4) to the location between every two symbols. It will result270

in a perfect binding only if there is a match at the current symbol level. Figure 7e shows the271

example of a matching result. Figure 7f and 7g show two potential examples of imperfect272

binding, indicating a non-matching result. We can pull them out through the open domains273

either on the identifier itself or a nearby open domain on the base strand. Therefore, the274

presence of the identifier B11 indicates a successful match.275

We can repeat the process to recognize multiple symbols at the same level. When we276

move to the next level l + 1, we can use the identifiers from this level l as a starting point for277

rewriting. To identify a symbol Sl+1,c = Sl,aSl,b at level l + 1, we simply pull out identifiers278

for Sl,a at odd symbols and Sl,b at even symbols at level l. Then we “move” the identifier to279

the middle. Finally, we give identifiers for Sl+1,c to the middle of each pair and identify the280

symbol.281

A possible weakness of our implementation is that the strand used for rewriting could282

potentially be very long. This could cause problems when performing these operations in283

vitro due to branch migration complications. Lastly, this search operation can handle multiple284

overlapping queries within the reference string, but this requires careful consideration of the285

base-pair sequence of the cells in designing identifier strands.286

7 Discussion287

We discuss the features and implementation constraints of the proposed algorithms.288

7.1 Ability to compute any non-conflicting pairwise operation289

In Section 4 and Section 5, we presented examples of algorithms that perform pairwise290

operations, namely sorting and shifting, respectively. Given the ability to identify pairs of291

bits and a universal way to rewrite a cell, we can readily implement any algorithm that292

performs non-conflicting pairwise operations. Such operations only entail rewriting pairs of293

adjacent bits. The result of the operation on a specific sequence should always be the same,294

irrespective of the execution order. To illustrate, consider the following operation:295

f(0, 0) = (X, X) f(0, 1) = (X, 1) f(1, 0) = (X, X) f(1, 1) = (0, X)296

Here X indicates a value that does not change. This operation is conflicting. To see why,297

consider its effect on the sequence 011. The second bit should change to 1 when the operation298
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is applied to the first pair. However, this bit should change to 0 when the operation is applied299

to the second pair. Depending on the order of execution, the final result will be different. To300

ensure an operation is non-conflicting, for every three adjacent bits that two operations are301

performed on, the middle bit should be set to the same value.302

Non-conflicting operations can be performed in parallel on all bit pairs. In the first step,303

we identify the four bit pairs described in 3.1. After this step, we supply strands with four304

labels covering the four bit pairs. Then, we release strands with specific labels one at a time305

to obtain write access to specific bit pairs. (Write access refers to a domain being exposed.)306

We rewrite these cells with the operation described in Section 3.2. The full operation requires307

rewriting all four bit pairs.308

We conclude that our encoding scheme and design method are generally applicable to309

parallel bitwise algorithms, provided that they can be expressed in terms of such non-conflicted310

pairwise operations.311

7.2 Converting to Different Encoding Schemes312

S1    1    2    3

Bit 0 Bit 1

1     2     3     4     5     6     7 1     2      3     4     5     6     7

Figure 8 One strand could be used to differentiate two bits

A benefit of the encoding scheme that we are proposing is that it can easily be converted to313

any other similar scheme since each cell always has an exposed domain 1. In the original314

SIMD DNA scheme proposed in [13], the authors designed two specific encoding schemes315

for the two applications proposed (rule 110 and a binary counter). We suggest that our316

encoding scheme could be used as an intermediate form when converting to other encoding317

schemes, designed for particular algorithms. Figure 8 illustrates how we can use a single318

strand (S1 1 2 3) to differentiate bit values of 0 from bit values of 1. We can use the technique319

discussed in 3.2 to re-write the data with a different encoding scheme, so long as the scheme320

also encodes each bit with 7 domains. Complete instructions for performing such encoding321

changes are given in Appendix A.322

7.3 Time Complexity of Parallel Search323

While the time complexity of the proposed parallel search is O(log(n)) in principle, where324

n is the query substring length, the time complexity of our SIMD DNA implementation325

is somewhat worse. While the abstract search algorithm finds the query in the reference326

string by pairing individual characters in parallel, and thus completes in O(log(n)) steps,327

our implementation searches for and identifies distinct symbols sequentially, that is to say, it328

first searches for a specific symbol across all possible locations at once, then it searches for329

the next symbol across all locations at once, and so on.330

The abstract algorithm assumes all symbols are identified in one pass to allow for further331

pairing. If we consider all the different symbols in a query string, counting repeated symbols,332

n
2i symbols must be searched sequentially at level i in our implementation. Accordingly, the333

total number of sequential search steps could be as high as O(n). However, at each level, all334

the occurrences of a specific symbol are identified simultaneously. At level i, each symbol335
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represents a binary string with a length of 2i, so there are at most 22i distinct symbols at336

level i. For example, in the first level, instead of searching for n
2 symbols, we only search for337

four distinct symbols. In the second level, there are only 16 distinct symbols. Since we only338

search for distinct symbols, the number of steps in the first few levels will be greatly reduced.339

Our parallel search algorithm currently only works on query strings having a length that340

is a power of two. However, we believe that our implementation could be modified to allow341

for arbitrary-length query strings. We do not provide details here, as they are cumbersome,342

but we outline the method as follows.343

Note that, in parallel search, the query string is searched reductively: at each level, two344

symbols are reduced to one symbol. When working with query strings having any arbitrary345

length, there might be an odd number of symbols in the current level, meaning that the last346

symbol cannot be reduced for the next level. In this case, we can add a method to identify347

the trailing odd symbol at the current level and replace it in the next level. The reduction348

can still be completed in a logarithmic number of levels.349

8 Conclusion350

We have presented algorithms for basic parallel operations within the SIMD DNA framework.351

We note that there are, in fact, two layers of parallelism possible:352

1. Bit-level Parallelism: instructions applied to all bits in an array at once.353

2. Data-level Parallelism: the same instructions applied to multiple arrays at once.354

While operations on DNA are slow and error-prone, with these levels of parallelism, perhaps355

DNA computation could scale to a truly impressive regime. Consider the following back-of-356

an-envelop estimates. Suppose:357

– we have 1012 independent cells in parallel in a single test tube;358

– a single operation takes approximately 10 minutes to complete.359

– different cells use the same DNA sequence. Using distinct sequences for different cells, as360

in our search operation, can result in a solution with multiple competing DNA molecules.361

At larger scales, this would result in an increase in reagent volume and could diminish362

reaction rates.363

This means that we can perform approximately 109 operations per second in a single test364

tube, already impressive. Now suppose that:365

– we have 100 test tubes.366

This means we can compute at 100,000 MIPS (million instructions per second). This is367

comparable to what very respectable existing silicon systems can achieve. The key conceptual368

difference between the SIMD DNA approach and other forms of DNA computing is that it369

exploits a substrate on which data is stored. This enables the SIMD parallelism.370

Many experimental hurdles remain in demonstrating and deploying this paradigm. DNA371

synthesis remains prohibitively expensive. A possible alternative is to use gene-editing372

techniques to encode data on naturally occurring DNA [11].373
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does not edit bit 1 since domain 1 is the only open domain for binding. In instruction 2,415

all domains in bit 1 are replaced by a single strand covering all domains with identifier Sa.416

Then in instruction 3, the strand S1 is detached, so domains 1, 2, and 3 on bit 0 are exposed.417

In Instruction 4, all domains in bit 0 are replaced by a single strand covering all the domains418

with the identifier Sb. Then any encoding scheme with 7 domains in 1 cell could be written419
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S1    1    2    3

Bit 0 Bit 1

1     2     3     4     5     6     7 1     2      3     4     5     6     7

Ins 1: Distinguish 0, 1

Ins 2: Replace Bit 1 with Strand Sa

S1

1     2     3     4     5     6     7 1     2      3     4     5     6     7

Sa     1     2     3     4     5     6     7 Sa     1     2     3     4     5     6     7

Ins 3: Detach S1

S1

1     2     3     4     5     6     7 1     2      3     4     5     6     7

S1*   1*   2*   3* S1*   1*   2*   3*

Sa

Ins 4: Replace Bit 0 with Strand Sb

1     2     3     4     5     6     7 1     2      3     4     5     6     7

Sa

Sb     1     2     3     4     5     6     7 Sb     1     2     3     4     5     6     7

Result

1     2     3     4     5     6     7 1     2      3     4     5     6     7

SaSb

Figure 9 Current coding scheme could be converted to other coding scheme

B Detailed Implementation of Each Step for Parallel Sorting422

Here we give an instruction set for parallel binary bubble sort with the previously defined423

encoding scheme. We can implement each step of the sorting algorithm in 12 individual424

operations. Details of the design are shown in Figure 10.425

The 12 instruction falls to 2 stages. The first stage is “identifying.” During instructions426

1-4, all the pairs (0, 1) are identified, and in both bit 0 and 1, a toehold is exposed for427

writing new data. More specifically, Instructions 1 and 2 identify the combination of (1, 0).428

In instruction 1, (S1 6 7 1 2 3) is issued to each pair of bits. In pair (0, 0), S1 and domains 6,429

7 are exposed. In pair (0, 1), since the only open domain is 1, it will not form a strong enough430

bind. In pair (1, 0), only S1 is exposed. In pair (1, 1), S1 and domains 2, 3 are exposed. In431

instruction 2, strand (6* 7* 1* 2* 3*) is issued to each pair of bits. Since pair (1, 0) is the432

only pair that does not have exposure 5 or 2, this strand will detach strand S1 in each pair433

except pair (1, 0). After Instruction 2, the toehold between a bit value of 1 and a bit value of434

0 in the pair (1, 0) is replaced by a strand with an identifier of S1. Instruction 3 seals off the435

domain exposed in the other pairs during Instruction 1 and 2 so that it will not be edited436

later. In instruction 4, the strand with identifier S1 is detached, exposing domains 6 and 7 in437

the left cell containing bit 1, or domains 2 and 3, in the right cell containing bit 0. After438

this instruction, toeholds are exposed only in the 1s and 0s in pair (1, 0). Other bits are not439
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affected.440

The second stage is flipping the bits in the pair (1, 0). In instruction 5, in the case of a441

bit value of 0, domains 2 and 3 are temporarily covered by a strand with identifier S2 so that442

the writing process will not interfere with the identified 0s at this moment. In instruction 6,443

a bit value of 1 is replaced by a strand with identifier S3 via the open toehold at domains 6444

and 7. The strand is then detached in instruction 8, exposing all the domains of that bit.445

Then, the bit value of 0 is written to the location of a bit value of 1 in instruction 8. In446

instruction 9, the temporary cover for a bit 0 is lifted. Then, in instructions 10 through 12,447

a bit 1 is written to the location of a bit value of 0 using the same scheme as instructions448

6 through 8. Throughout the process, only bits identified in the first stage with toeholds449

exposed are affected.450

C Detailed Implementation of Each Step for Parallel Left Shift cell451

The instructions are shown as followed, with an example of shifting 11001 to 10011.452

The first three instructions are exactly the same as those for identifying bit pairs in453

Section 3.1. In instruction 1, the strand (S1 6 7 1 2 3), which identifies the different patterns454

of two bits, is issued to each pair of bits. In instruction 2, strand (6* 7* 1* 2* 3*) is issued,455

detaching strands with open domains 6 and 7, or 2 and 3. After this instruction, strands456

with identifier S1 only remain at pair (1, 0). In instruction 3, we issue two species of strands457

at the same time: (S2 6 7 1) and (S3 1 2 3). (S2 6 7 1) will bind with pair (1, 1) and (S3458

1 2 3) will bind with pair (0, 0). S2 will not form a stable binding with pair (0, 0) or (0, 1)459

because the binding area is only one domain. Same goes with S3 and pair (1, 1) or (0, 1).460

After this instruction, only domain 1 between pair (0, 1) is still exposed. In instruction 4,461

strand (S4 4 5 6 7 1) is issued. Through the open domain 1 between pair (0, 1), the strand in462

bit 0 is replaced by S4. After this step, the first bit in pair (1, 0) is identified with the strand463

S1, and the first bit in pair (0, 1) is replaced with the strand S4.464

Instructions 5 to 9 rewrite the first bit in pair (1, 0) to 0. In instruction 5, the strand S1465

is detached, exposing domains 6, 7, 1, 2 and 3. The exposed domains 2 and 3 are sealed off466

in instruction 6 to not interfere with subsequent instructions. In instruction 7, strand (S5 2467

3 4 5 6 7) is issued through the open toehold on domains 6 and 7 in the bit 1 in pair (1, 0),468

and displaces the strand in that bit. Since domains 2 and 3 are sealed off, bit 0 will not be469

modified in this instruction. In instruction 8, strand S5 is detached, leaving the domains in470

the bit open. In instruction 9, strands (2 3) and (4 5 6 7), which represent 0, are written to471

the bit containing open domains.472

In the final two instructions, we write 1 to the first bit in pair (0, 1). In instruction 10, 3473

strands are issued to each pair of bits: (S2* 6* 7* 1*), (S3* 1* 2* 3*) and (S4* 4* 5* 6* 7*474

1*). S2, S3 and S4 are detached through these strands. Since S4 covers the bit 0 in pair (0,475

1), after this step, domain 3 and 4 are exposed in these bits, ready to be written to 1. In the476

final step, strands (2 3), (2 3 4 5), and (6 7) are issued to each cell. Strand (2 3) and (6 7)477

will fix the exposed domains from strand S2 or S3, and strand (2 3 4 5) will write bit 1 to478

the bit with domain 3 and 4 exposed. Details of the design are shown in Figure 11.479

For all the pairs of (0, 0) and (1, 1), the first bit in those pairs will not be modified since480

the toehold 1 will be covered with S2 or S3 in the process.481
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D Detailed Implementation of the Second Level in Parallel Search482

Here we discuss the second level of the parallel search operation. The first level of search483

operation uses the instructions that were described in Section 3.1, except we now only issue484

strands to non-overlapping bit pairs. We use identifiers A0 = 00, A1 = 01, A2 = 10, A3 = 11485

to represent symbols in this level. For instance, to search for the target string 1011, we486

search for the symbol A2 in odd symbols and A3 in even symbols. The cases of A2 in even487

symbols and A3 in odd symbols are covered by searching with offset.488

In the first instruction of the second level, we uncover the A2 in the odd symbols, creating489

an open region. In instruction 2, we use a long strand to cover the entire right half of490

the symbol, from the start of identifier A2 to the rightmost cell. This strand is pulled out491

in instruction 3. In instruction 4, we use an identifier A′
2 to cover domains 5, 6, 7 in the492

rightmost cell while covering all other domains.493

Instructions 5 to 8 are essentially the same as instructions 1 to 4, but with two significant494

differences. Firstly, since A3 is the second symbol in the current level of query, we only495

search for even-numbered symbols (2, 4, 6, etc.). Secondly, instead of rewriting the right half496

of the symbol, we write the left half. We make the new identifier A′
3 to cover domains 2, 3, 4497

in the left-most cell. In instruction 9, we use identifier (B11 5 6 7 1 2 3 4) to recognize the498

two consecutive symbols A2 and A3. Since, in the regular encoding, no strand starts from499

domain 5 or ends at domain 4, it will only form a perfect binding with a matched result.500

After the identifier B1 1 binds, we also need to clean up the imperfect bindings in case501

of a mismatch. Figure 12 shows the instructions for the cleanup process. In instruction502

10, we first use the complementary strand (5* 6* 7* 1* 2* 3* 4*) to pull out the imperfect503

bond identifier B11. Then we issue strands covering the exposed domain. We first issue504

strands covering fewer domains, then in following instructions, we issue strands covering505

more domains. As a result, we always obtain a perfect fit; the strands will not be pulled out506

in potential unrelated rewriting processes.507
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1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1    6      7      1      2      3S1    6      7      1      2      3S1    6      7      1      2      3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1S1

6*   7*   1*   2*   3* 6*   7*   1*   2*   3*6*   7*   1*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1

6     72     3 6     72     3 6     72     3 6     72     3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1

S1*   6*   7*   1*   2*   3*S1*   6*   7*   1*   2*   3*S1*   6*   7*   1*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2   2   3 S2   2   3 S2   2   3 S2   2   3 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2 

S3    2     3     4     5     6     7 S3    2     3     4     5     6     7S3    2     3     4     5     6     7 S3    2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2 S3

S3*   2*   3*   4*   5*   6*   7* S3*   2*   3*   4*   5*   6*   7*S3*   2*   3*   4*   5*   6*   7* S3*   2*   3*   4*   5*   6*   7*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2 

2     3     4     5     6     7 2     3     4     5     6     7 2     3     4     5     6     7 2     3     4     5     6     7

1     2     3     4     5     6     7

S2 

S2*   2*   3*S2*   2*   3*S2*   2*   3*S2*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3    2     3     4     5     6     7S3    2     3     4     5     6     7S3    2     3     4     5     6     7S3    2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3

S3*   2*   3*   4*   5*   6*   7* S3*   2*   3*   4*   5*   6*   7*S3*   2*   3*   4*   5*   6*   7* S3*   2*   3*   4*   5*   6*   7*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

2     3     4     5     6     72     3     4     5     6     72     3     4     5     6     72     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 1: Identify the pair (1, 0)

Ins 2: Detach Strand on other pairs

Ins 3: Seals off region exposed previously

Ins 4: Expose Toehold on pair (1, 0)

Ins 5: Temporarily cover toehold on bit 0

Ins 6: Identify bit 1

Ins 7: Expose all domain in bit 1 identified earlier

Ins 8: Rewrite 0 to exposed bit

Ins 9: Remove the Protection Strand

Ins 10: Identify Bit 0 

Ins 11: Expose all domain in bit 0 identified earlier

Ins 12: Rewrite Bit 0 to exposed bit

Result

Original

Figure 10 Instructions for Parallel Sorting



T. Chen, A. Solanki, and M. Riedel 11:19

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1    6    7    1    2    3 S1    6    7    1    2    3 S1    6    7    1    2    3 S1    6    7    1    2    3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1 S1 S1

6*   7*   1*   2*   3* 6*   7*   1*   2*   3* 6*   7*   1*   2*   3* 6*   7*   1*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1
S2    6    7    1

S3    1    2    3

S2    6    7    1

S3    1    2    3

S2    6    7    1

S3    1    2    3

S2    6    7    1

S3    1    2    3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1 S3S2

S4     4     5     6     7     1S4     4     5     6     7     1S4     4     5     6     7     1S4     4     5     6     7     1

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1 S3S2 S4

S1*   6*   7*   1*   2*   3*S1*   6*   7*   1*   2*   3* S1*   6*   7*   1*   2*   3*S1*   6*   7*   1*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4

S5     2     3     4     5     6     7S5     2     3     4     5     6     7 S5     2     3     4     5     6     7S5     2     3     4     5     6     7 S5     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4S5

S5*   2*   3*    4*   5*   6*   7* S5*   2*   3*    4*   5*   6*   7*S5*   2*   3*    4*   5*   6*   7* S5*   2*   3*    4*   5*   6*   7* S5*   2*   3*    4*   5*   6*   7*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4

S2*   6*   7*   1*

S3*   1*   2*    3*

S4*   4*   5*   6*   7*   1*

S2*   6*   7*   1*

S3*   1*   2*    3*

S4*   4*   5*   6*   7*   1*

S2*   6*   7*   1*

S3*   1*   2*    3*

S4*   4*   5*   6*   7*   1*

S2*   6*   7*   1*

S3*   1*   2*    3*

S4*   4*   5*   6*   7*   1*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Original: 11001

Ins 1: Identifying pair (1, 0)

Ins 2: Detaching S1 on all other pairs

Ins 3: Identifying pair (0, 0) and (1, 1)

Ins 4: Identifying bit 0 in pair (0, 1)

Ins 5: Detach S1

Ins 6: Sealing off exposed region 2 and 3

Ins 7: Displacing bit 1 in pair (1, 0) with S5

Ins 8: Detaching S5, emptying location

Ins 9: Write 0 to empty location

Ins 10: Detaching S2 S3 and S4

Ins11: Writing 1 to location with region 4 and 5 exposed, fix exposed 2,3 and 6,7

Final: 10011

Figure 11 Instructions for the Left Shift cell
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1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3A2
Initial state: Sequence 1011, Symbols is already identified in previous level 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3
A2*   6*   7*   1*   2*   3*

A2

Ins 1: Uncover Symbol A2 for every odd numbered symbol 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3
S     6     7     1     2     3     4     5     6     7

Ins 2: Cover the entire half of symbol for the odd A2 symbols

Ins 3: Remove the cover

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3S

S*

Ins 4: Write: A new identifier A2' covers domain 5, 6, 7 in right most register, cover the rest

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3

A2'

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3A2'

A3*   6*   7*   1*
Ins 5: Uncover Symbol A3 for every even numbered symbol 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A2'
S     2     3     4     5     6     7     1

Ins 6: Cover the entire half of symbol for the even A3 symbols

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A2' S

S*Ins 7: Remove the cover

Ins 8: Write: A new identifier A6' covers domain 2, 3, 4 in left most register, cover the rest

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A2'

A3'

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A2' A3'

B11Ins 9: Add identifier for current level

Result

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

B11

Figure 12 Instructions for a search operation of target sequence 1011
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1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

B11 A1
Initial state: Sequence 1010, After the identification step 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

B11 A1

5*   6*   7*   1*   2*   3*   4*
Ins 10: Pull out identifier B11 in an imperfect fit 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A1

Ins 11: Cover the open domains 6, 7 or 2, 3 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 12: Cover the open domains 5, 6, 7 or 2, 3, 4

A1

A3'A2'

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 13: Cover the open domains 4, 5, 6, 7 or 2, 3, 4, 5

A1A2'

Figure 13 Instructions for the clean up process for a failed searching, these instructions won’t
affect the result of a successful search.
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