
A Scalable, Deterministic Approach
to Stochastic Computing

Yadu Kiran
kiran013@umn.edu

University of Minnesota
Twin Cities, Minnesota, USA

Marc Riedel
mriedel@umn.edu

University of Minnesota
Twin Cities, Minnesota, USA

ABSTRACT
Stochastic computing is a paradigm in which logical operations are
performed on randomly generated bit streams. Complex arithmetic
operations can be performed by simple logic circuits, with a much
smaller area footprint than conventional binary counterparts. How-
ever, the random or pseudorandom sources required to generate
the bit streams are costly in terms of area and offset the gains. Also,
due to randomness, the computation is not precise, which limits
the applicability of the paradigm. Most importantly, to achieve
reasonable accuracy, high latency is necessitated. Recently, deter-
ministic approaches to stochastic computing have been proposed.
They demonstrated that randomness is not a requirement. By struc-
turing the computation deterministically, the result is exact and
the latency is greatly reduced. However, despite being an improve-
ment over conventional stochastic techniques, the latency increases
quadratically with each level of logic. Beyond a few levels of logic,
it becomes unmanageable. In this paper, we present a method for
approximating the results of their deterministic method, with la-
tency that only increases linearly with each level. The improvement
comes at the cost of additional logic, but we demonstrate that the
increase in area scales with

√
𝑛, where 𝑛 is the equivalent number

of binary bits of precision. The new approach is general, efficient,
composable, and applicable to all arithmetic operations performed
with stochastic logic.
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1 INTRODUCTION
In stochastic computing, randomly generated streams of 0’s and 1’s
are used to represent fractional numbers. The number represented
by a bit stream corresponds to the probability of observing a 1
in the bit-stream at any given point in time. The benefit of this
representation is that complex operations can be performed with
simple logic. For instance, multiplication can be performed with
a single AND gate and scaled addition can be performed with a
single multiplexer. The drawbacks of the conventional stochastic
model are 1) the latency is high, and; 2) due to randomness, the
accuracy is low. Latency and accuracy are related parameters: to
achieve acceptable accuracy, high latency is required [1].

Recently, a "deterministic" approach to stochastic computing has
been proposed [5], that uses all the same structures as stochastic
logic, but on deterministically generated bit streams. Deterministic
approaches incur lower area costs since they generate bit streams
with counters instead of expensive pseudo-random sources such
as linear feedback shift registers (LFSRs). Most importantly, the
latency is reduced by a factor of approximately 1

2𝑛 , where 𝑛 is the
equivalent number of bits of precision. However, the latency is
still an issue, as it increases quadratically for each level of logic.
Any operation involving two 2𝑛-bit input bit streams will produce
a resulting bit stream of length 22𝑛 bits. This is a mathematical
requirement: for an operation such as multiplication, the range of
values of the product scales with the range of values of the operands.
However, most computing systems operate on constant precision
operands and products. Since this is not sufficient to represent the
22𝑛 output in full precision, we will have approximation errors. Our
primary goal is to minimize this error.

Recent papers have discussed techniques for approximating the
deterministic computation with quasirandom bit streams, such as
Sobol sequences [2, 7, 8, 15]. Unfortunately, the area cost of these
implementation is high: the logic to generate the quasirandom bit
steams is complex and grows quickly as the number of bit streams
increases, in most cases, completely offsetting the benefits.

In this paper, we present a scalable deterministic approach that
maintains constant bit stream lengths, and so approximates the
results, but with much lower area cost than the quasirandom se-
quence approach. We structure the computation by directly pairing
up corresponding bits from the input bit streams, using only simple
structures such as counters. Not only does our approach achieve
a high degree of accuracy for the given bits of precision, but also
maintains the length of bit streams. This property lends Compos-
ability to our technique, allowing multiple operations to be chained
together. Maintaining constant bit stream length comes at the cost
of additional logic, but we demonstrate the increase in area scales
with

√
𝑛, where 𝑛 is the number of binary bits of precision. The
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new approach is general and efficient, applicable to all arithmetic
operations performed with stochastic logic. We validate our results
on a variety of benchmark circuits.

This paper is structured as follows: Section 2 provides a brief
overview and background of stochastic computing. Section 3, and
Section 4 presents our new approach. Section 5 evaluates our
method on benchmarks, comparing and contrasting it with prior
methods. Finally, Section 6 outlines the implications of this work.

2 BACKGROUND INFORMATION
2.1 Introduction to Stochastic Computation
The paradigm of stochastic logic (sometimes called stochastic “com-
puting”) operates on non-positional representations of numbers [3].
Bit streams represent fractional numbers: a real number 𝑥 in the
unit interval (i.e., 0 ≤ 𝑥 ≤ 1) corresponds to a bit stream 𝑋 (𝑡)
of length L, where 𝑡 = 1, 2, ..., 𝐿. If the bit stream is randomized,
then for precision equivalent to conventional binary with precision
𝑛, the length of the bit stream L must be 22𝑛[11]. The probability
that each bit in the stream is 1 is denoted by 𝑃 (𝑋 = 1) = 𝑥 . Fig. 1
illustrates how the value 5

8 can be represented with bit streams.
Note that the representation is not unique, as demonstrated by the
four possibilities in the figure. In general, with a stochastic repre-
sentation, the position of the 1’s and 0’s do not matter. Since we
will be dealing with non-randomly generated bit streams, we will
refer to this representation as unary rather than stochastic.

5

8
⇒

1 0 1 1 0 1 0 1
0 1 0 1 1 1 0 1
1 1 0 1 0 0 1 1
0 0 1 1 1 1 0 1

Figure 1: Representation of values with stochastic logic.

Common arithmetic operations that operate on probabilities can
be mapped efficiently to logical operations on unary bit-streams.

• Multiplication. Consider a two-input AND gate whose
inputs are two independent bit streams 𝑋1 (𝑡) and 𝑋2 (𝑡), as
shown in Fig. 2(a). The output bit stream 𝑌 , is given by

𝑦 = 𝑃 (𝑌 = 1) = 𝑃 (𝑋1 = 1 and 𝑋2 = 1)
= 𝑃 (𝑋1 = 1)𝑃 (𝑋2 = 1) = 𝑥1𝑥2 .

• Scaled Addition. Consider a two-input multiplexer whose
inputs are two independent stochastic bit streams 𝑋1 and 𝑋2,
and its selecting input is a stochastic bit stream 𝑆 , as shown
in Fig. 2(b). The output bit stream 𝑌 , is given by

𝑦 = 𝑃 (𝑌 = 1)
= 𝑃 (𝑆 = 1)𝑃 (𝑋1 = 1) + 𝑃 (𝑆 = 0)𝑃 (𝑋2 = 1)
= 𝑠𝑥1 + (1 − 𝑠)𝑥2 .

Complex functions such as exponentiation, absolute value, square
roots, and hyperbolic tangent can each be computed with a small
number of gates [9, 18].

2.2 The Deterministic Approach to Stochastic
Computing

In conventional stochastic logic, the bit streams are generated from
a random source such as a linear feedback shift register (LFSR). The
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Figure 2: Stochastic implementation of common arithmetic opera-
tions: (a) Multiplication; (b) Scaled addition.

computations performed on these randomly generated bit streams
are not always accurate. Fig. 3 demonstrates a worst case scenario
where multiplying two input bit-streams corresponding to proba-
bilities 3

5 and 2
5 , results in an output of probability 0

5 .

3
5 ⇒ 100110

2
5 ⇒ 001001

00000 ⇒
0
5

Figure 3: Errors with conventional stochastic logic.

Consider instead a thermometer encoding. This is just a unary
encoding, but one in which all the 1’s appear consecutively at the
start, followed by all the 0’s (or vice-versa), as shown in Fig. 4.

3

4
⇒1110    

5

8
⇒11111000

Figure 4: Thermometer Encoding

This encoding is not a requirement, but rather a consequence
of the circuit used to generate deterministic bit streams, shown
in Fig. 5. For a computation involving 𝑛-bit precision operands,
the setup involves an 𝑛-bit register, counter and comparator. The
register stores the corresponding binary value of the input operand.
The bit stream is generated by comparing the value of the counter
to the value stored in the register. The counter runs from 0 to 2𝑛 − 1
sequentially, so the resulting bit-stream inherits a thermometer
encoding.

n-bit
Register

n-bit
Counter

n-bit
Comparator

111100000

Thermometer Encoded
Bit-stream

Figure 5: Thermometer Code Generator

Recently, a “deterministic” approach to stochastic computation
was proposed, where the computation is performed on bit-streams
which are generated deterministically based on a thermometer
encoding [5]. By deterministically generating bit streams, all sto-
chastic operations can be implemented efficiently based on the
following scheme: every bit of one operand must be matched up
against every bit of the other operand(s) exactly once.



Performing a multiply operation on unary bit-streams using the
deterministic approach involves convolving one input operand with
another, as illustrated in Fig 6. Holding a bit of one input operand
constant, the operation is repeated for each of the bits of the other
input operand. The particular approach is known as clock-division,
due to the division of the clock signal in the circuit for generating
the input bit streams.

𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ  𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ  𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ 𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ

𝑏଴ 𝑏଴ 𝑏଴ 𝑏଴   𝑏ଵ 𝑏ଵ 𝑏ଵ 𝑏ଵ   𝑏ଶ 𝑏ଶ 𝑏ଶ 𝑏ଶ   𝑏ଷ 𝑏ଷ 𝑏ଷ 𝑏ଷ

𝐴 = 𝑎଴𝑎ଵ𝑎ଶ𝑎ଷ 𝐵 = 𝑏଴𝑏ଵ𝑏ଶ𝑏ଷ

Figure 6: Multiplication using Clock-Division

Fig. 7 illustrates the Multiply operation on two operands ( 34 and
1
4 ) performed stochastically and deterministically. It is evident that
the deterministic method achieves perfect accuracy. However, for
each level of logic, the bit stream lengths increase. For a multiply
operation involving two streams of 2𝑛 bits each, the output bit
stream is 22𝑛 bits. This is a mathematical requirement in order to
represent the full range of values. However, for large values of 𝑛,
the bit stream lengths become prohibitive. For most applications,
one has to maintain a constant bit stream length across all the levels
of logic, and hence, approximation is inevitable [4]. We discuss how
to do this in Section 3.

A⇒ 1000 1000 1000 1000

B⇒ 1111 1111 1111 0000

1000 1000 1000 0000 ⇒
3

16

A⇒ 3/4 ⇒1110 B⇒ 1/4 ⇒1000

A⇒ 1011 0110 1111 1101

B⇒ 0100 0000 1001 0010

0000 0000 1001 0000 ⇒
2

16

A⇒ 3/4 B⇒ 1/4

𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑖𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑠

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑖𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑠

Figure 7: Multiplication - Conventional Stochastic vs Deterministic

For an operation such as multiplication, two copies of the circuit
in Fig. 5 are used for generating the bit streams of the input operands.
As shown in Fig. 8, the counter of the second input operand counts
up only when the counter of the first input operand rolls over 2𝑛−1.
This can be achieved by connecting the AND of all the output lines
of the first counter to the clock input of the second counter.

3 SCALABLE DETERMINISTIC APPROACH
In the deterministic approach discussed in Section 2.2, the bit stream
lengths grow quadratically with each level of logic [5]. However,
this drawback becomes unsustainable for larger circuits. Our goal
is to keep the length constant across multiple levels of logic.

3.1 Downscaling
The low-hanging fruit for approximating is to simply downscale
the input operands, i.e, generate bit streams of smaller length as

A

B

Bit-stream A

Bit-stream B
Counter
[0,2௡)

Counter
[0,2௡)

CLK

Figure 8: Circuit implementation of the clock division
method.

shown in Fig. 9. Consider a input operand that would correspond
to a bit stream of length L. We want to reduce the length of the
bit stream generated, by downscaling or approximating the input
operand itself. Down-scaling is ideally performed by reducing the
bit-stream by powers of 2, i.e, divide 𝐿 by 𝑑 = 2𝑖 , where 𝑑 is the
degree of downscaling. In other words, every set of 𝑑 bits in the
original bit stream would correspond to one bit in the downscaled
bit stream. The deterministic multiplication operation restores the
target length.

Downscaling is easily achieved by right-shifting the value stored
in the register in Fig. 5. For example, for an input operand with
24 = 16 bits of precision and probability value 12

16 , we would store
the binary equivalent of 12, i.e 11002, in the register. To downscale
the value by a factor of 4, we would right shift the value of the
register by 2 bits to obtain the binary value 112 (that corresponds
to the probability value 3

4 ). In general, to downscale a value by a
factor of 𝑑 = 2𝑖 , we would right shift by 𝑖 bits. Consequently, this
would also reduce the size of the counters used for bit generation.

In Fig. 7, we showed that deterministically multiplying two input
bit-streams of length 2𝑛 bits each, results in an output bit stream of
length 22𝑛 . But if we were to approximate the input operands to bit
streams of length 2

𝑛
2 , then our output bit-stream would be limited

to 2𝑛 bits. If the target value of a bit-stream can be accurately rep-
resented with fewer bits then there will be no errors. For example,
the probability 20

32 can also be represented as 10
16 or 5

8 . However, in
general, the process of downscaling will introduce errors. We want
to minimize the error. In a mathematical sense, we want a scheme
that always generates the optimal approximation.

In the context of this paper, the error is the difference between
the result and the optimal approximation, given a target bit stream
length. For example, the probability 11

16 , when downscaled to 4 bits,
can be optimally approximated as 3

4 (but not as 1
4 ,

2
4 , or

4
4 ).

11 11 10 00 00
1   1   1   0   0 

Down-sampled 
bit-streams

11 11 10 00 00
1   1   0   0   0 

11 11 10 00 00 Original bit-stream

Sampled bit = 1 Sampled bit = 0

Figure 9: Downscaling - Two Possible Cases

When downscaling a thermometer encoding, there are only two
possible scenarios that can occur, irrespective of the length of the



input bit-streams. These are illustrated in Fig. 9 where we try to
approximate 5

10 to be represented with just 5 bits. In both cases,
a single bit conveys the wrong information. Using either one of
the down-scaled bit-streams as an input to an arithmetic operation
results in an error. The method that we will present in this paper
always opts for the right-hand side case in Fig. 9, where the down-
scaled bit stream is an under-approximation of the actual value.
The reasoning behind this will be evident in Section 3.3.

For an operation involving two downscaled input operands of
2𝑛 bits each, it can be mathematically deduced that the error that
can occur in the output bit stream is at most (2𝑛 − 1) bits out of
22𝑛 bits. It’s worse than it appears as it grows as a function of the
bit-stream length of the inputs, as well as the number of logic levels.
We can do better.

3.2 Error Compensation
The basic idea of our approach is to systematically compensate for
the error that we introduce when down-scaling. We do so during
the clock division process, shown in Fig. 6.

We illustrate with an example. Consider the multiply operation
of two input operands, each of length 16 bits. To restrict the length
of the output bit stream to just 16 bits, we will downscale the input
operands that corresponds to a bit stream of 4 bits, a downscaling
factor of 16

4 = 4. In general, if the input-operands are p bits in length,
we down-scale them to length q bits, such that q=√𝑝 and that the
length of the output bit stream remains the same as the input bit
steams. Consider the case where 𝐴 = 5

16 and 𝐵 = 15
16 as shown

in Fig. 10. Neither of the two input operands can be downscaled
to 4 bits without introducing errors. For each input operand, we
round down, shifting the value stored in the register by 2 bits. So
𝐴 = 5

16 gets down-scaled to 𝐴′ = 1
4 , which is equivalent to 4

16 .
𝐵 = 15

16 gets down-scaled to 𝐵′ = 3
4 , which is equivalent to 12

16 . We
underestimate the value of 𝐴′ by 1

16 , and 𝐵
′ by 3

16 .
Fig. 9 shows that only one bit in a downscaled bit-stream(s) is

erroneous. And this erroneous bit is carrying partially incorrect
information. In our example shown in Fig. 10, for 𝐴′, we can inter-
pret the second bit which is highlighted in blue, as having 1/4th
of its information "incorrect". Likewise, for 𝐵′, 3/4th of its last bit
(highlighted in orange) can be considered "incorrect" information.

Down-scaled 
bit-stream

1111 1000 0000 0000

Original bit-stream

1000

A=
5

16

A′=
1

4
 ≈

4

16

Error A′= 5 − 4 = 1
(Under -Approximation)

   

1111 1111 1111 1110

Rounding down

1110

B=
15

16

B′=
3

4
 ≈

12

16

Error B′= 15 − 12 = 3
(Under -Approximation)

   

Figure 10: Example – Error Compensation

When performing the clock division operation which was dis-
cussed 2.2 in, each bit is repeated multiple times (in this example,

four times). This is shown in Fig. 11. This provides the opportunity
to compensate for the error incurred during downscaling. For 𝐴′,
we know that the second bit is erroneous, and that 1/4th of this
bit is "incorrect". This bit is also repeated four times during the
clock division operation. So our instinct would be to "correct" this
error by inverting that bit once, out of the four times it is repeated.
Similarly, for 𝐵′, we know that 3/4th of its last bit is "incorrect".
Naturally, we would want to invert this bit three out of the four
times it is repeated.

We mentioned earlier in Section 3.1, that out of the two pos-
sible cases when downscaling (over-approximation and under-
approximation), we would always under-approximate the value. By
restricting ourselves to this case, we know that the erroneous bit
in our downscaled bit-stream is always the first 0 we encounter in
our thermometer encoded bit-stream; and to compensate for this
error, we would always have to invert this 0 to 1, a certain number
of times during our clock division operation.

A′=
1

4

   
𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ  𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ  𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ 𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ

𝑏଴ 𝑏଴ 𝑏଴ 𝑏଴   𝑏ଵ 𝑏ଵ 𝑏ଵ 𝑏ଵ   𝑏ଶ 𝑏ଶ 𝑏ଶ 𝑏ଶ   𝑏ଷ 𝑏ଷ 𝑏ଷ 𝑏ଷ

⇓
1000 1000 1000 1000
1111 1111 1111 0000

B′=
3

4

   

Error A′ = 1 Error B′ = 3

Figure 11: Example – Candidate Bits to Invert

If the input-operands are p bits in length, we down-scale them
to length q bits, such that q=√𝑝 . The down-scaled bit stream has
an error of e, implying a portion 𝑒

𝑞 , of a 0, is incorrect. In the clock-
division operation, each bit is repeated q times. To compensate for
the error, we invert the 0 to 1, e out of the q times that it is repeated.

We know how many bits we need to invert, but we now face
the challenge of determining which position of the bits to invert.
The erroneous bit is repeated q times, and there are q candidate
positions to perform the e (i.e Error magnitude) bit flips. It turns
out that we can decide these positions in a deterministic fashion,
by performing another multiply operation.

3.3 Multiplication within an Operation
The bit flips need to occur in the right proportion. In other words,
each bit flip of the first operand should be distributed equally among
all the bits of the second operand.

Take the example in Fig. 10. 𝐴′ (the downscaled bit stream of 𝐴)
has an error of 1, or in other words, one of the 0s should be flipped
to 1 and this needs to be distributed among the bits of B’. Since 𝐵′

represents 3
4 , it makes sense for that bit flip to align with a 1 in

the bit stream for 𝐵′. On the same line 𝐵′ has an error of 3, and
needs to be distributed among the bits of 𝐴′. With 𝐴 representing
1
4 , in order to distribute those bit flips uniformly, we would align
only one of those bit flips with a 1 in the bit stream of A, and the
remaining with 0s.

Trying to figure this distribution out off the top of one’s head
is easy, but we need a way to compute this deterministically using
digital logic. We can do this with a multiply operation. In our
example for 𝐴′, we can compute 3 × 1

4 = 3
4 ≈ 1. In fact, we can do

so with another stochastic multiply operation.



In the example shown in Fig. 11, based on the error, we would
need to invert one bit of 𝐴 and three bits of 𝐵. Since we are always
under-approximating our input operands (and consequently, the
result), we will always be changing 0’s to 1’s. For a bit stream 𝑋 ,
let 𝐸𝑟𝑟𝑜𝑟 (𝑋 ) be the number of bits we need to invert, and 𝐼𝑛𝑣 (𝑋 )
be the number of inverted bits that need to align with a 1 from the
other operand. The error compensation is illustrated below.

Inv(𝐴′) = Error𝐴′ × 𝐵′

= 1 × 3
4
= 1

(1)

Inv(𝐵′) = Error𝐵′ ×𝐴′

= 3 × 1
4
= 1.

(2)

Now that we know where to align those bit flips , we perform the
multiply operation with error compensation (bit-flips) as shown
below in Fig. 12.

1100 1000 1000 1000
1111 1111 1111 1000

1100 1000 1000 1000

Figure 12: Inverting the Erroneous Bits
The result of this operation is an output bit-stream corresponding

to the value 5
16 . This is our desired result, as

5
16 ×

15
16 = 4.6875

16 which
is optimally represented as 5

16 .
It is important to note that even with error compensation, it

is still possible for our output bit-stream to not be an optimal ap-
proximation. This is because the multiply operations performed
in Eq. (1) and Eq. (2) are carried out with the downscaled values
of our original input operands 𝐴 and 𝐵, and hence, there is an ap-
proximation involved. However, the error is bounded to be at most 2
bits, regardless of the length of the input operands. This is because,
in Eq. (1) and Eq. (2), 𝐴′ and 𝐵′ can have an error of at most 1 bit
(out of 2𝑛/2 bits) from the original values of 𝐴 and 𝐵, as shown in
Figure 9. Consequently, the values obtained for Inv(𝐴′) and Inv(𝐵′)
can also differ by at most 1 from their optimal values. Stated dif-
ferently, when performing the inversion, the maximum error that
can be introduced is two bits (one for A, and one for B). This would
translate to a maximum error of only two bits at the output.

Initially, we set out with the goal to deterministically compute
the multiplication of two 2𝑛 length input bit streams.We then down-
scale them to 2𝑛/2 length input bit streams, to produce an output
bit-stream of length 2𝑛 . This introduces errors in the resultant bit
stream since we are dealing with approximations, and we want
the optimal approximation for our result. This error can be deter-
ministically quantified (and compensated) by two other multiply
operations, which also involve 2𝑛/2 bit-stream. These operations
can happen in parallel. Therefore, to produce the desired output
bit-stream of length 2𝑛 bits, the latency is 2𝑛 + 2𝑛 = 2𝑛+1. However,
there is another optimization that can be implemented. The two
stages of this operation, i.e determining the error and multiplica-
tion with error compensation, can be pipelined to maintain the
throughput of one computation every 2𝑛 bits.

The method we propose shares a lot of similarities with multipli-
cation using partial products in the binary domain. We divide the
bits of the operands (𝐴 and 𝐵) into higher-order (𝐴ℎ and 𝐵𝐻 ), and

lower-order (𝐴𝐿 and 𝐵𝐿) bits. The higher-order bits constitute the
down-scaled input operands, while the lower order bits represent
the error. The error is compensated by inverting bits, and where
we invert those bits is determined by two multiplications: 𝐴𝐿 × 𝐵𝐻 ,
and 𝐵𝐿 ×𝐴𝐻 . We use these results to correct for the error in our
main multiplication of our downscaled operands (𝐴𝐻 × 𝐵𝐻 ). The
one divergence is that we’re not performing the multiplication of
the lower-order bits, i.e 𝐴𝐿 × 𝐵𝐿 . This aspect was initially part of
our design, and in fact, eliminates the minute error (max bound of
2 bits) discussed earlier. But this minor improvement in accuracy
is accompanied by a 30% increase in area cost. We believe that the
trade-off is not worth it.

In our example, we have illustrated how to perform multiplica-
tion using 16-bit length streams, which conveniently has a square
root. However, the proposed technique can still be applied to bit
streams of all lengths that are powers of 2, with the caveat that we
would need to sacrifice pipelining due to the difference in latencies
of the two stages of the operation.

4 HARDWARE IMPLEMENTATION
The complete circuit for ourmethod is shown in Fig. 13a and Fig. 13b.
By downscaling the input length to the square root of its original
value, the binary values of 𝐴 and 𝐵 can be partitioned in half, as
shown in the figure. The higher-order bits represent our downscaled
operands, while the lower-order bits represent the error.

Fig. 13a represents the first stage of our operation, responsible
for computing Eq. (1) and Eq. (2). It employs two deterministic
stochastic multiplier circuits, each with two unary bit stream gen-
erators. The generated bit streams are fed to an AND gate which
performs the multiplication, and the result is accumulated using a
counter.

The results from Fig. 13a are used in Fig. 13b, which carries out
the second stage of the operation, i.e the main multiply operation.
Fig. 13b features two unary bit stream generators for our down-
scaled input operands, which are then fed to an Error Compensation
Module that performs the bit flips, and is then fed to a AND gate.

The Error Compensation Module consists of logic that computes
the input to the selector line for two multiplexers: one that chooses
between 𝐴 and NOT(𝐴), and the other between 𝐵 and NOT(𝐵). The
outputs of these multipliexers serve as the final input to an AND.
The output of the AND gate is accumulated into a 𝑛-bit counter
and would be the final result of our multiply operation.

5 SIMULATION AND RESULTS
We evaluated our approach across relevant benchmarks. We com-
pare it to prior stochastic implementations which rely on pseudo-
random or quasi-random generation of bit-streams, such as LFSRs
and Sobol sequences [8]. We can consider the Sobol sequence im-
plementation to be representative of all approaches that rely on
quasirandom sequences called low-discrepancy sequences, as they
all showcase similar accuracy and area cost. We also compare our
method against conventional binary implementation.

Table 1 shows the Mean Absolute Error (MAE) Percentage and
Gate Cost of various implementations for the stochastic multiplica-
tion of two inputs. We set the area of the Sobol-Sequences approach
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as our reference for comparisons. The output bit streams were com-
puted for all possible values of input operands of length 2𝑛 . Note
that the absolute error in this case, can never be 0. Mathematically,
we would need to observe the output from 22𝑛 cycles to obtain no
error at all.

Our approach offers significant improvements in accuracy over
conventional stochastic implementations that use LFSRs, while trail-
ing behind the Sobol sequence generator by only a small amount.
However, when we examine the gate cost, shown in Fig. 14, we
see that the increase in cost over LFSR implementations is minor.
The minor improvement in accuracy provided by low-discrepancy

Table 1:
MAE and Gate Cost % for the multiply operation of various

stochastic implementations.

Bitstream
Length

LFSR Sobol Sequence Our Approach

MAE Gate
Cost MAE Gate

Cost MAE Gate
Cost

26 48.64% 53.29% 20.29% 100% 26.08% 87.95%
28 28.26% 47.28% 9.15% 100% 10.86% 66.2%
210 8.39% 43.05% 1.34% 100% 1.58% 57.73%

sequences such as the Sobol sequence is accompanied by a large
increase in area cost. The gate cost for such implementations scale
quadratically as the precision of the input operands increase, as
evident in Fig. 14. This is due to the fact that such low-discrepancy
sequences incorporate a Directional Vector Array in their circuit,
whose gate cost scale by a factor of 𝑛2 [7].

Figure 14: Relative gate cost for different implementations
of a multiply circuit.

Although we only discussed Multiplication in our examples, the
proposed method can be applied to many stochastic operations.[9,
18] demonstrates how to perform operations such as exponent,
sin, log in the stochastic domain using NAND gates to implement
the Maclaurin series expansion of these function. For these tests,
we settled on bit-streams of length 28 bits, as it provides a good
balance of accuracy, precision and latency. We do make some minor
adjustments such that the coefficients in polynomial are approxi-
mated such that the denominator’s precision is 1

28 . The increase in
error due to this change is offset by increasing the degree of the
polynomial, which translates to more levels of logic.

The Mean Absolute Error (MAE) and gate cost are shown in
Table 2. The general trend continues; our technique offers almost
identical accuracy as the state-of-the-art Sobol-Sequences, while
offering significant reductions in area. In some cases, the gate cost
of Sobol-Sequences is over twice our proposed circuit. And the gap
only widens as we scale the length of the bit-streams.



Table 2:
MAE and Gate Cost % for functions implemented using

Maclaurin Expansion.

Operation
LFSR Sobol Sequence Our Approach

MAE Gate
Cost MAE Gate

Cost MAE Gate
Cost

𝑒−𝑥 33.2% 44.27% 12.3% 100% 14.20% 53.32%
𝑠𝑖𝑛 𝑥 31.3% 48.67% 13.1% 100% 12.9% 57.20%
𝑙𝑜𝑔(1 + 𝑥) 34.5% 45.31% 14.6% 100% 17.3% 48.02%
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥 32.7% 52.76% 10.9% 100% 12.7% 60.61%

Figure 15: Relative gate cost for different implementations
of a multiply circuit.

6 CONCLUSION
Recent work has demonstrated that randomness is not a require-
ment for “stochastic” computing. The deterministic approach in [5]
mitigates most of the drawbacks typically associated with the par-
adigm, including the long latency. However, the method in these
papers does not allow for graceful approximations when constant
bit-stream lengths are required.

In this paper, we presented an approach that builds upon this
foundation. By deterministically downscaling the inputs and com-
pensating for approximation errors during the clock division opera-
tion, we demonstrate that it is possible to produce accurate results,
while also preserving the bit stream lengths. This makes our ap-
proach composable, allowing operations to be chained together. Our
simulations show that our approach can achieve very accurate re-
sults, with the maximum error bounded as two bits for each level
of logic, irrespective of the bit stream length. The area cost com-
pares favorably with conventional binary counterparts in many
applications. It offers significant advantages over other stochastic
approaches that rely on random or quasi-random bit streams.
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