
The Synthesis of Cyclic Dependencies
with Craig Interpolation

John D. Backes and Marc D. Riedel

Department of Electrical and Computer Engineering
University of Minnesota

200 Union St. S.E., Minneapolis, MN 55455
{back0145, mriedel}@umn.edu

Abstract—The accepted wisdom is that combinational circuits
must have acyclic (i.e., loop-free or feed-forward) topologies.
And yet simple examples suggest that this need not be so. In
previous work, we advocated the design of cyclic combinational
circuits (i.e., circuits with loops or feedback paths). We proposed
a methodology for synthesizing such circuits and demonstrated
that it produces significant improvements in area and in delay.
Cycles are introduced in the restructuring and minimization
phases, at the level of functional dependencies. In the original
formulation, the functional dependencies were obtained through
SOP minimization with the Berkeley SIS package; validation
was performed with BDD-based analysis. In recent work, we
presented a SAT-based technique for validation. In this paper, we
present a SAT-based method for synthesizing cyclic dependencies,
through Craig interpolation. While full synthesis results are
not presented in this work, it is our plan to incorporate this
methodology into a full synthesis routine soon.

I. INTRODUCTION

A collection of logic gates forms a combinational circuit
if the outputs can be described as Boolean functions of the
current input values only. A common misconception is that
combinational circuits must have acyclic topologies; that is to
say, they must be designed without any loops or feedback
paths. In fact, the idea that “combinational” and “acyclic”
are synonymous terms is so thoroughly ingrained that many
textbooks provide the latter as a definition of the former
(e.g., [9], p. 14; [16], p. 193)

Indeed, any acyclic circuit is clearly combinational. Re-
gardless of the initial values on the wires, once the values
of the inputs are fixed, the signals propagate to the outputs.
The behavior of a circuit with feedback is generally more
complicated. Such a circuit may exhibit sequential behavior,
as in the case of an S-R latch, or it may be unstable, as in
the case of an oscillator.

And yet, cyclic circuits can be combinational. Consider the
functions shown in Figure 1. Notice that for any assignment
of the primary inputs a, b, c, and d, each function f0, f1, and
f2 evaluate to a definite Boolean value.

In previous work, we showed that combinational circuits
can be optimized significantly if cycles are introduced [12].

This research has been funded in part by a grant from the SRC Focus Center
Research Program on Functional Engineered Nano-Architectonics (FENA),
contract No. 2003-NT-1107.

a, b, c, d f0, f1, f2

0 0 0 0 0 1 1
0 0 0 1 0 1 1
0 0 1 0 1 0 1
0 0 1 1 1 0 1
0 1 0 0 0 1 1
0 1 0 1 0 1 1
0 1 1 0 1 0 1
0 1 1 1 1 0 1
1 0 0 0 0 1 1
1 0 0 1 0 1 1
1 0 1 0 0 1 1
1 0 1 1 0 1 1
1 1 0 0 1 1 0
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

f0

f2f1

a c

a b

c d

f0 = ab + f̄1

f1 = c̄ + f2a

f2 = c + d + f̄0

Fig. 1. Example: A cyclic circuit with 4 primary inputs and 3 primary
outputs.

f0 = f̄1 = 0
f1 = f2 = 1
f2 = 1

f0

f2f1

a c

a b

c d

Fig. 2. Network in Figure 1 with a = 1, b = 0, c = 1, d = 0.

The intuition behind this is that, with feedback, all nodes
can potentially benefit from work done elsewhere; without
feedback, nodes at the top of the hierarchy must be constructed
from scratch. We proposed a methodology for synthesizing
such circuits and demonstrated that it produces significant im-
provements in area and in delay. Cycles are introduced in the
restructuring and minimization phases, of logic synthesis, at

f0 = 1
f1 = 1
f2 = f̄0 = 0

f0

f2f1

a c

a b

c d

Fig. 3. Network in Figure 1 with a = 1, b = 1, c = 0, d = 0.

the level of functional dependencies. In this previous approach
we used the Simplify command in the Berkely SIS package
[14] to compute functional dependencies. This approach is less
efficient than the methodology we propose in this work for two
reasons. First, the Simplify command used SOP manipulations
to derive implementations for target functions. This places a
structural bias on an implementation which may make the
representation appear to be not combinational even though
certain manipulations of the SOP representations could yield
a combinational result. Second, The algebraic approach to
synthesizing dependency functions is not as efficient as newer
SAT or BDD based approaches [10], [3]

A. Functional Dependencies

The process of multilevel logic synthesis typically consists
of an iterative application of minimization, decomposition,
and restructuring operations [2]. An important operation is
substitution (also sometimes called “resubstitution”), in which
node functions are expressed, or re-expressed, in terms of other
node functions as well as of their original inputs. The functions
in the table in Figure 1 are defined in terms of the primary
inputs a, b, c, and d. After substitutions, the functions are
redefined in terms of both the primary inputs as well as other
primary output functions.

If there are no cycles in the dependencies, any specification
that is consistent is valid. By consistent we mean that the
specification of each node, viewed in isolation, yields the cor-
responding target function when we apply the other candidate
functions at its inputs. With cyclic dependencies, the specifi-
cation may well be consistent and yet it can be spurious. To
wit, suppose we wish to compute some complicated function
f and its complement f̄ . Saying that

f = f̄ ,

f̄ = f,

is evidently meaningless.
Indeed, a pivotal step in the synthesis methodology is deter-

mining whether cyclic dependencies are valid. Early work on
the topic established the theoretical and conceptual framework
for analysis: [11], [5], [15], [12], [13]. These papers discussed
analysis either in an explicit setting, or else in a symbolic set-
ting based on binary decision diagrams (BDDs) [3]. In recent
work, we propose a more efficient technique for analysis based
on Boolean satisfiability (SAT) [1]. In this paper, we present

a SAT-based method for synthesizing cyclic dependencies,
through Craig interpolation [4].

B. Definitions and Notation

We use the standard notation: addition (+) denotes dis-
junction (OR), multiplication (·), denotes conjunction (AND),
and an overbar (x̄) denotes negation (NOT). The restriction
operation (also known as the cofactor) of a function f with
respect to a variable x,

f |x=v,

refers to the assignment of the constant value v ∈ {0, 1} to
x. The composition operation of a function f with respect to
a variable x and a function g,

f |x=g,

refers to the substitution of g for x in f . A function f depends
upon a variable x iff f |x=0 is not identically equal to f |x=1.
Call the variables that a function depends upon its support set.
We may also use the term depends in reference to a specific
input assignment to a function. When a function depends on
some variable for a specific input assignment, this means that
toggling the value of the variable while holding the value of
the other support set variables constant causes the function to
toggle values.

for a function f(x0, x1,. . . , xn) we use the notation
f(x0, x1,. . . , xn)1 to denote a function’s ON set (the set of
assignments to variables x0, x1,. . . , xn where f evaluates to
1). Similarly, we use the notation f(x0, x1,. . . , xn)0 to denote
a function’s OFF set (the set of assignments to variables
x0, x1,. . . , xn where f evaluates to 0).

A SAT Instance is a Boolean formula specified in con-
junctive normal form (CNF). We will also refer to a circuit
with a single primary output as a SAT instance or a miter;
the satisfiability of the primary output can be represented as
a CNF formula.

C. Network Model

Our model is at the level of abstraction applicable in the
technology-independent phase of logic synthesis. Our goal is
to construct a network that computes Boolean functions of
Boolean input variables x1, . . . , xm. Internally, the network is
specified as a collection of nodes N . Associated with each
node is a node function fi and an internal variable yi, 1 ≤
i ≤ n. The node functions can depend on input variables as
well as on internal variables. In the dependency graph, a
directed edge is drawn from node i to node j iff the node j is
in the support set of node function fj . The dependency graph
for functions in Figure 1 is shown to the right of the truth
table.

For a fixed assignment of inputs, call the network the
induced network, and call the associated dependency graph
the induced dependency graph. In the induced network, if a
node function fi doesn’t depend upon any internal variable
(i.e., it evaluates to 0 or 1), then we may substitute this value
for the corresponding internal variable yi in other expressions.
In this way, we can continue to simplify the network, until

no further simplifications are possible. Call the result the
simplified induced network. Figure 2 and Figure 3 show the
induced graph for different assignments of the variables a,
b, c, and d for the functions defined in Figure 1. In Figure
2, we consider the assignment of the primary input variables
a = 1, b = 0, c = 1, d = 0. For this assignment, f2 evaluates
to 1 because c = 1. f2 does not depend on d or f0 for this
assignment because f2 evaluates to 1 regardless of the values
of d or f0. f1 evaluates to 1 regardless of the assignment of
c, and f0 evaluates to 0 regardless of the value of a. The
dependency graph in Figure 3 is generated by this same logic.

D. Definition of Combinationality

A network is combinational iff it computes unique Boolean
output values for each Boolean input assignment. We some-
times abuse this terminology and say that a network is
combinational for a specific input assignment, meaning that
it computes unique Boolean output values for that input
assignment. If there are “don’t care” conditions on the inputs,
then it is sufficient if the network computes unique Boolean
values for input assignments in the “care” set.

This computation must hold:
• regardless of the initial state
• and independently of all timing assumptions.

Proposition 1
A network is combinational iff, for each assignment of Boolean
values to the inputs, There is never a cycle in the induced
dependency graph

This definition of combinationality is functionally equivalent
to that proposed in earlier work [11], [5], [15], [12].

E. Functional Dependencies with Craig Interpolation

A method for synthesizing functional dependencies based
on Craig interpolation was proposed in [10]. This method
scales much better with circuit size than earlier BDD-based
methods [3]. We give a brief review of it here. It constructs
a miter, as shown Figure 41. The satisfiability of the primary
output of this circuit indicates whether or not there exists a
dependency function h(f1,f2,f3) that can be used to represent
the function f0 for some network. Here f0 is known as the
target function.

Here f0 Left and f0 Right are two copies of the same
network. The primary inputs x0, x1, . . . , xn (referred to as
X) are the primary inputs to f0 Left. The primary inputs
x0*, x1*, . . . , xn* (referred to as X*) are the primary inputs
to f0 Right; these are distinct sets of variables, but in direct
correspondence with one another. In other words, fi(X) is
equivalent to fi*(X*) where the assignment of X is equal to
the assignment of X*.

1The miter that we use differs slightly from the one proposed in [10]. Rather
than asserting f0 to be on and f0* to be off, we assert the Exclusive-OR of
the two functions. Because of the symmetry between the circuits f0 Left and
f0 Right, for every assignment of the primary inputs X and X* that cause
f0 to evaluate to 1 and f0* to evaluate to 0, there will be another assignment
of X and X* that cause f0 to evaluate to 0 and f0* to evaluate to 1

If the primary output of this circuit is satisfied, then this
indicates that f0 evaluates to a different value from f0* while
functions f1, f2, and f3 evaluate to the same values of f1*,
f2*, f3* respectively, on each side of the circuit for some
assignment of X and X*. Clearly this indicates that the ON set
f0(f1,f2,f3)1 is not disjoint from the OFF set f0(f1,f2,f3)0.
Accordingly, there is no function h(f1,f2,f3) that is equivalent
to f0(X) (or f0*(X*)).

If the primary output of the circuit is unsatisfiable for all
assignments of X and X*, this indicates that either f0 (or f0*)
is a constant 1 or 0, or that the ON set f0(f1,f2,f3)1 is disjoint
from the OFF set f0(f1,f2,f3)0. This indicates that there is
some function h(f1,f2,f3) that is functionally equivalent to
f0(X).

[10] discusses a method using Craig interpolation to find
the dependency function h. The underlying details of the
approach to computing h are not important; it is only important
that the reader understands that if the ON set of a function
f (f0,f1,. . . ,fn)1 is disjoint from the OFF set f (f0,f1,. . . ,fn)0

then a function h can be computed by generating an interpolant
from a SAT instance that is similar to that in Figure 4.

II. ILLUSTRATION OF ALGORITHM

Previous approaches separated the phases of synthesis and
analysis: functional dependencies were first generated; then,
if they were cyclic, they were validated. In this paper, we
propose a SAT-based approach that does both simultaneously:
it verifies whether it is possible to generate target functions
with specified support sets and, at the same time, whether or
not the selected cyclic representation is valid.

In order to assert that a cyclic dependency is valid, we
need to add additional logic to the SAT instance in Figure 4.
This logic will cause the SAT instance to be satisfied if the
conditions stated in Proposition 1 are not met. In order to
assert the conditions of Proposition 1, we must assert that for
every assignment of the primary inputs to a given network,
the network’s induced dependency graph is acyclic.

Let us again choose a function f (X) and its equivalent
function f*(X*). We can check to see if f is dependent
on variable xi for some assignment of X by checking the
satisfiability of the following clauses:

(f 6≡ f∗)
(x0 ≡ x0∗)(x1 ≡ x1∗) · · · (xi−1 ≡ xi−1∗)
(xi+1 ≡ xi+1∗) · · · (xn ≡ xn∗)

(1)

Equ. 1: Clauses that evaluate to true if and only if function f (f*) is dependent
on variable xi (xi*) for some assignment of X (X*)

These clauses are satisfied when f assumes a different value
from f* and every variable in the support set of f assumes
the same value as its corresponding variable in f* except for
variable xi. Clearly if the value of f (f*) toggles with the
value of xi (xi*), then f (f*) is dependent on xi (xi*) for
that assignment of X (X*).

Assuming we are given the cyclic dependency graph for
a network we can add the logic of Equation 1 to the SAT

instance in Figure 4 to determine if the target functions behave
combinationally for the given dependency graph.

In Figure 5, we check to see if the dependency graph in
Figure 1 can be implemented for some network. Here gates
g1, g2, and g3 check to see if possible dependency functions
exist. These gates, and the logic that feeds them, are created
by the same intuition as that gate g1 in Figure 4. In Figure
5, gate g1 checks for the existence of a dependency function
for f0 in terms of f1, a, and b. Similarly, g2 checks for the
existence of a dependency function for f2 in terms of f0, c, and
d. Gate g3 checks for the existence of a dependency function
for f1 in terms of f2, a, and c. Clearly if such dependency
functions exist for f0, f1, and f2, then gates g1, g2, and g3

will be identically 0.
We assert that Proposition 1 holds true for this network

by adding gate g4. If, for some assignment of the primary
inputs of this network, the induced graph contains a cycle
then g4 will evaluate to 1. Notice in Figure 1 that there
is a cyclic dependency, indicated by the red arrows. If for
every assignment of a, b, c, and d at least one of these red
dependency arrows disappears in the induced graph, then the
network is combinational. For this specific network we must
check to see if f0 depends on f1 while f1 depends on f2 and
f2 depends on f0 for some assignment of the primary inputs.

Again we can check this condition by adding the logic of
Equation 1 to the SAT instance proposed in Figure 4. Notice
that the support set of f0 is f1, a, b. Therefore if f0 depends
on f1 for some assignment of a, b, c, and d then the following
clauses will be satisfied:

(f0 6≡ f0∗)(a ≡ a∗)(b ≡ b∗)

Likewise, the support set of f1 is f2, a, c. Equation 1 tells
us that the following clauses are satisfied when f1 depends on
f2:

(f1 6≡ f1∗)(a ≡ a∗)(c ≡ c∗)

Finally, the support set of f2 is f0, c, d. Equation 1 tells
us that the following clauses are satisfied when f2 depends on
f0:

(f2 6≡ f2∗)(c ≡ c∗)(d ≡ d∗)

In Figure 5 these clauses are the logic of g4. If g4 evaluates
to 1 for some assignment of a, b, c, d, a*, b*, c*, and d*
then the target function for f0 is dependent on f1 because f1

toggles the value of f0. Furthermore, f1 must also toggle with
the value of f2 while the value of f2 is toggled by the value
of f0. If some assignment of the primary inputs causes this
mutually dependent behavior, then the network is not behaving
combinationally.

If g1, g2 and g3, are shown to be identically 0 then we know
the target functions f0(f1,a,b), f1(f2,a,c), and f2(f0,c,d) exist.
If g4 is identically 0, then we know that no induced graph of
the network contains any cycles; therefore the representation
behaves combinationally.

f0 Left

f0 f1 f2 f3

x0 x1 xn

f0 ≠ f0*

f0 Right

f3* f2* f1* f0*

x0*x1* xn*

f2 = f2* f3 = f3* f1 = f1*

g1

SAT?

.

Fig. 4. A miter that checks to see if f0 can be specified in terms of f1, f2,
and f3.

III. GENERAL METHOD

We sketch the steps of the algorithm for the general case of
any sort of dependency graph.

1) Choose a dependency graph for target functions (say
with a branch and bound approach [12]).

2) Locate all of the cycles in the dependency graph.
3) For each target function, create a SAT instance that

asserts there is a dependency function for the target
function with the given support set (gates g1, g2, and
g3 in Figure 5)

4) For each dependency in each cycle, create a SAT in-
stance that asserts that the dependency holds for some
assignment of the network’s primary inputs (gate g4 in
Figure 5).

5) Create the logical OR of the primary outputs of the
circuits produced from Steps 3 and 4. Check the sat-
isfiability of this circuit at the output of this OR gate.

6) If the circuit is unsatisfiable, cache the solution. Con-
tinue the search with other possible dependency graphs
until a good solution is found (branching and bounding).

We can abstract the structure of the SAT instance in Figure 4
to show how we can verify that there is a dependency function
for any specified support set for any target function. Given
a network with target functions f0, f1, . . . , fn and primary
inputs x0, x1, . . . , xn, say that we want to see if f0 can be
represented with a support set of f1, f2, . . . fn. Clearly such
a dependency function exists for f0 if the values of f1, f2,
. . . , fn when f0 = 0 are not equivalent to the values of f1,
f2, . . . , fn when f0 = 1. We can check to see if the ON set
f0(f1,f2, . . . , fn)1 is disjoint from the OFF set f0(f1,f2, . . . ,
fn)0 by the same logic as in the example in Figure 4. We

f2 Left

f2 f0 c d

SAT?

f2 ≠ f2*

f2 Right

d* c* f0* f2*

f1 Left

f1 f2 a c

f1 Right

c* a* f2* f1*

c = c* d = d* f0 = f0* a = a* c = c* f2 = f2* f1 ≠ f1*

g2 g3

f0 Left

f0 f1 a b

a b c d

f0 ≠ f0*

f0 Right

b* a* f1* f0*

a = a* b = b* f1 = f1*

g1

a* b* c* d* a b c d a* b* c* d* a b c d a* b* c* d*

g4

Fig. 5. A miter that checks to see if f0(f1,a,b), f1(f2,a,c), and f2(f0,c,d) can be implemented simultaneously.

create two copies of the network, referred to as f0 Left and
f0 Right. Let the primary inputs for f0 Left be x0, x1, . . . ,
xn and the primary inputs for f0 Right be x0*, x1*, . . . , xn*.
Let the candidate functions of f0 Left be f0, f1, . . . , fn and
the candidate functions of f0 Right be f0*, f1*, . . . , fn*.

Consider the assertions:

(f1 ≡ f1∗)(f2 ≡ f2∗) · · · (fn ≡ fn∗)(f0 6≡ f0∗).

Call these “A”. If these assertions are satisfied this indicates
that there is some assignment of x0, x1, . . . , xn and x0*, x1*,
. . . , xn* such that every variable in the support set of f0 is
equal to its corresponding variable in the support set of f0*. At
the same time, f0 assumes a different value from f0*. Clearly
the ON set and OFF set of the target function f0 are disjoint
for the given support set and therefore a dependency function
h(f1,f0,. . . ,fn) that implements f0 does not exist.

If these assertions are never satisfied then we know that the
ON set and OFF set of f0 are disjoint. Therefore there must
be a dependency function h(f1,f0,. . . ,fn) that implements f0.
Further explanation of this approach is given in [10].

To verify that any sort of dependency graph for a network
behaves combinationally we simply add the logic of Equation
1 to each dependency in each cycle in the dependency graph.

From Proposition 1 we know that every induced dependency
graph must be acyclic for a network to behave combinationally.
We also know that the logic in Equation 1 asserts that a

function f depends on some variable xi in the support set
of f . If the logical AND of all the clauses in Equation 1 for
every dependency in some cycle in the dependency graph of a
network is satisfied, this indicates that the induced dependency
graph of the network contains a cycle for some primary input
assignment. Therefore the specified dependency graph does
not behave combinationally. Likewise, if these clauses are
never satisfied for any cycle for any assignment to the primary
inputs of the network, then the induced dependency graph is
always acyclic and therefore combinational. Call the logical
AND of the clauses in Equation 1 for every dependency in
some cycle “B”.

By this line of reasoning, if all conditions A and all
conditions B (for every cycle) are false for every assignment
to the primary inputs of the network, then the selected depen-
dency graph must be a functionally equivalent, combinational
representation for the given network.

IV. IMPLEMENTATION AND RESULTS

This algorithm was implemented using the AIG package in
Berkley ABC [6]. The SAT solver used was MiniSAT [7]. All
the trials were run on a 32-bit Linux machine with a 3 GHz
AMD Athlon 64 X2 Dual Core 6000+ CPU. Only one core
was utilized for running the algorithm.

The cyclic dependencies for these benchmark circuits were
produced with our tool CYCLIFY and then verified with this

Total Support Set Size
Circuit Number of PIs Number of POs Support Set Size Number of Cycles Runtime(s)

5xp1 7 10 43 1 .01
bbsse 11 11 86 6 .01

clip 9 5 49 1 .03
cse 11 11 89 1 .02

dk16 7 8 67 1 .02
inc 7 9 57 4 .01
s1 13 11 150 2 .03

s298 11 14 138 3 .60
sse 11 11 86 6 .01

styr 14 15 167 22 .11
table3 14 14 220 3 .24

TABLE I
BENCHMARK CIRCUITS WITH CYCLIC DEPENDENCIES PRODUCED BY CYCLIFY AND VERIFIED BY OUR NEW ALGORITHM

new algorithm. The time that is reported is the time that it
takes to generate the SAT instance given the target functions
and the support sets and the time it takes for the SAT instance
to be solved. The time that it took to solve the SAT instance
almost entirely dominated the overall runtime. The table does
not include the time that it takes to generate interpolants
for the target functions for the verified representation as this
would be a final step in a synthesis process. The results show
the size of the support set for all primary outputs summed
together. The number of cycles that are listed are the number
of cycles that exist in the circuit on a functional level (if the
design were mapped to some technology many other physical
cycles may exist in the topology of the circuit). The cycles in
the dependency graphs were discovered using the algorithm
described in [17].

The runtime for the algorithm seems to be correlated best
with the size of the support set for the given dependency
graph. We have not yet incorporated our methodology into
a full synthesis routine, but we plan to use this methodology
in conjunction with a branch and bound method similar to the
approach proposed in [12]. In this implementation the best
“cost” metric may likely be the size of the support set for the
selected target functions of the implementation. For example,
choosing to compute target functions with a support set size
of k would likely be easier to map to a technology that uses
k-inputs gates

V. DISCUSSION

Early work in the 1960’s and 70’s established the premise of
combinational circuits with cycles, and suggested the possible
benefits. Still, combinational circuits are not designed with
cycles in practice. Perhaps designers have eschewed feedback
due to the apparent complexity of reasoning about cyclic
structures. And yet, feedback provides significant opportunities
for optimization, both for area and for delay. Indeed, contrary
to the conventional wisdom, cyclic solutions are not a rarity;
they can readily be found for most circuits that are not trivially
simple or sparse. We have run trials with our program called
CYCLIFY, on a range of randomly generated examples and
benchmark circuits. We note that solutions for most of the
examples have deeply nested loops, with dozens or even
hundreds of cycles. The current practice for state of the art

synthesis tools is to reject solutions that have cycles in them. It
is argued that cyclic solutions are too hard to analyze for them
to be useful. In previous work we have proposed a method
for timing analysis [13]. It has been pointed out that post
silicon testing may proove to be a difficult task for cyclic
circuits, as fault fabrication of cyclic circuits may cause them
to behave sequentially [11]. Indeed testing seems to remain an
open problem for cyclic circuits.

In future work, we will incorporate the strategy discussed
here into a full synthesis methodology, based on a branch-and-
bound search on the space of possible cyclic dependencies. An
important point is ensure gate-level correctness when cyclic
dependencies at the functional level are mapped, as discussed
in [8]. Indeed, technology mapping sometimes invalidates
cyclic solutions that were valid at the functional level. This
issue can be overcome by simply verifying correctness at every
stage, and rejecting solutions that are invalid. Any solution
that is combinational on a functional level can be mapped to
a gate level solution that is also combinational. Indeed, the
algorithm that we suggested in [1] performs gate-level SAT-
based validation of cyclic circuits. A more elegant solution
that we are pursuing is to perform cycle-aware technology
mapping.

REFERENCES

[1] J. Backes, B. Fett, and M. Riedel. The analysis of cyclic circuits
with boolean satisfiability. In ICCAD ’08: Proceedings of the 2008
IEEE/ACM international conference on Computer-aided design, San
Jose, CA, USA, Nov. 2008.

[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L.Sangiovanni-
Vincentelli. Multilevel logic synthesis. In Proceedings of the IEEE,
number 2, pages 264–300, Philadelphia, PA, USA, 1990.

[3] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, pages 677–691, August 1986.

[4] W. Craig. Linear reasoning: A new form of the herbrand-gentzen
theorem. Symbolic Logic, 22:250–268, 1957.

[5] Stephen A. Edwards. Making cyclic circuits acyclic. In DAC ’03:
Proceedings of the 40th conference on Design automation, pages 159–
162, New York, NY, USA, 2003. ACM.

[6] A. Mishchenko et al. ABC: A system for sequential synthesis and
verification.

[7] N. Sörensson et al. Minisat v1.13 - a sat solver with conflict-clause
minimization. Technical report.

[8] J.-H. R. Jiang, A. Mishchenko, and R. K. Brayton. On breakable
cyclic definitions. In ICCAD ’04: Proceedings of the 2004 IEEE/ACM
International conference on Computer-aided design, pages 411–418,
Washington, DC, USA, 2004. IEEE Computer Society.

[9] R. Katz. Contemporary Logic Design. Benjamin/Cummings, 1992.
[10] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko. Scalable

exploration of functional dependency by interpolation and incremental
sat solving. In ICCAD ’07: Proceedings of the 2007 IEEE/ACM
international conference on Computer-aided design, pages 227–233,
2007.

[11] S. Malik. Analysis of cyclic combinational circuits. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
13(7):950–956, Jul. 1994.

[12] M. Riedel and J. Bruck. The synthesis of cyclic combinational circuits.
In DAC ’03: Proceedings of the 40th conference on Design automation,
pages 163–168, 2003.

[13] Marc D. Riedel and Jehoshua Bruck. Timing analysis of cyclic
combinational circuits. In IWLS ’04: Int’l Workshop Logic and Synthesis,
2004.

[14] E. M. Sentovich, K. J. Singh, L. Lavagno, R. Murgai C. Moon, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli. SIS: A system for sequential circuit synthesis. Technical
report, 1992.

[15] Thomas Robert Shiple. Formal analysis of synchronous circuits. PhD
thesis, 1996. Chair-Alberto Sangiovanni-Vincentelli.

[16] John F. Wakerly. Digital Design: Principles and Practices. Prentice-
Hall, Inc., 2000.

[17] Herbert Weinblatt. A new search algorithm for finding the simple cycles
of a finite directed graph. J. ACM, 19(1):43–56, 1972.

